A		Reg. No.	:							
Question Paper Code: 53A04										
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2018										
Third Semester										
Agricultural Engineering										
15UAG304 - FLUID MECHANICS AND HYDRAULICS										
(Regulation 2015)										
Dur	ation: Three hours			Maxin	num: 100 Marks					
PART A - (10 x 1 = 10 Marks)										
1.	Fluid in a substance	e which offers no re	sistance to change of		CO1- R					
	(a) Pressure	(b) Shape	(c) Volume		(d) Temperature					
2.	Pressure measured a	above complete vac	cuum is pre	essure	CO1 -R					
	(a) gage	(b) absolute	(c) vacuum		(d) atmospheric					
3.	The liquid in a rotat	ting tank illustrate _	flow		CO2 -R					
	(a) rotational	(b) irrotational	(c) laminar		(d) turbulent					
4.	Bernoulli's equation	n deals with the law	of conservation of		CO2- R					
	(a) Mass	(b) Energy	(c) Momentum		(d) Work					
5.	Pitot tube is used to	CO3- R								
	(a) velocity	(b) discharge	(c) flow		(d) pressure					
6.	The ratio of inertinumber	a force to viscou	s force is known as		CO3- R					
	(a) Reynolds	(b) Froude	(c) Mach		(d) Euler					

7.	Trapezoidal channel section will be m radius is equal to	CO4- R					
	(a) depth of flow	(b) $\frac{3}{4}$ the depth of flow					
	(c) half the depth of flow	(d) $\frac{1}{4}$ the depth of flow					
8.	is a concrete structure channel	CO4- R					
	(a) Notch (b) Weir	(c) Syphon	(d) Venturi meter				
9.	Cavitation will take place if the pressure of the flowing fluid at any point is vapour pressure of the fluid						
	(a) more than	(b) less than					
	(c) equal to	(d) less than nor equal to					
10.	Multistage centrifugal pumps are used to obtain		CO5- R				
	(a) High head	(b) High discharge					
	(c) Pumping of high viscous fluid	(d) High efficiency					
PART – B (5 x 2= 10Marks)							
11.	State Pascal's law. Give at least two examples where this principle is applied.						
12.	Classify fluid flow		CO2 -R				
13.	Differentiate Orifice and mouthpiece	CO3 -R					
14.	Find the discharge of water flowing over a rectangular notch of 2m length when the constant head over the notch is 300 mm. Take $C_d = 0.60$.						
15.	State the difference between a closed, with sketch.	semi-closed and open impeller	CO5 -R				
PART – C (5 x 16= 80Marks)							

16.	(a)	An isosceles triangular plate of base 4 m and altitude 6 m is immersed vertically in water. Its axis of symmetry is parallel to and at a depth of 6 m from the free water surface. Calculate the magnitude and location of total pressure force.	CO1 -App	(16)				
		Or						
	(b)	Derive an expression to determine pressure using U-tube and inverted U – tube differential manometer add necessary diagram	CO1 -App	(16)				
17.	(a)	Derive continuity equation in Cartesian co-ordinates	CO2 -App	(16)				
		Or						
	(b)	Describe flow pattern with necessary sketch	CO2 -Ana	(16)				
18.	(a)	A venture meter with 200 mm diameter at inlet and 100 mm throat is laid with axis horizontal, and is used for measuring the flow of oil of specific gravity 0.8. The difference of levels in the U-tube differential manometer reads 180 mm of mercury whilst 11.52 X 103 kg of oil is collected in 4 minutes. Calculate the co-efficient of discharge for the meter. Take specific gravity of mercury as 13.6.	CO3 -Ana	(16)				
Or								
	(b)	Derive an equation for head loss in pipes using Darcy-Weisbach equation	CO3- Ana	(16)				
19.	(a)	(i) State the conditions under which the rectangular section of an open channel will be most economical. Derive these conditions.	CO4 -U	(8)				
		(ii) Derive an equation for minimum specific energy in terms of critical depth		(8)				
Or								
	(b)	Water flows at a steady and uniform depth of 2 m in an open channel of rectangular cross section having base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate height of hump and sketch the flow profile. Consider the value of Manning's rugosity co-efficient $N = 0.02$ for the channel	CO4 -Ana	(16)				

3

surface.

20. (a) What are the dimensionless numbers in fluid mechanics? Define CO5-U (16) them. Under what circumstances in each of these important.

Or

(b) Describe the working of air lift pump and hydraulic ram CO5- U (16)