				1				
Reg. No.:	1	l	i					
			·		 			

Question Paper Code: 60686

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester

Instrumentation and Control Engineering

IC 2251/IC 43/EC 1263 A/10133 IC 403/080260004 — DIGITAL PRINCIPLES AND DESIGN

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Design a half adder using logic gates.
- 2. Realize the function $F = \sum m(0, 1, 3, 6, 7)$ using 8:1 multiplexer.
- 3. Show how a JK flip-flop can be operated as a T flip-flop? Apply a 10 KHz square wave as input and determine the output frequency.
- 4. What is meant by a shift register? List any two types.
- 5. Implement two input XOR gate using 2 to 1 multiplexer.
- 6. List out the special features for Field Programmable Gate array devices.
- 7. What are the merits and demerits of the TTL family?
- 8. List the characteristics of ECL logic gates.
- 9. List the characteristics of CMOS family.
- 10. Why does the MOS family mostly use NMOS devices?

PART B - (5 × 16 = 80 marks)

11. (a) Use Quine McCluskey method to find a minimum cost SOP realization of the function $f(x1, x2, x3, x4) = \Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14)$. (16)

Or

- (b) (i) Show how the function $f(w1; w2, w3) = \sum m(0, 2, 3, 4, 5, 7)$ can be implemented using 3 to 8 binary encoder and OR gate. (8)
 - (ii) Explain the operation of Full-Adder circuit with truth table and circuit diagram. (8)
- 12. (a) Design a 4 bit up/down synchronous counter using JK flipflops and explain its operation. (16)

Or

(b) For the given state diagram design a sequential circuit using D flipflops.

13. (a) (i) Implement the following Boolean expressions using ROM:

$$F_1(A,B,C) = \Sigma m(0,1,3,5)$$

$$F_2(A,B,C) = \Sigma m(0,3,5,7)$$
 (9)

(ii) Realize the following function using 8:1 MUX

$$F(A,B,C) = \Sigma m(0,2,4,6,7).$$
 (7)

Or

(b) (i) Tabulate the PLA programmable table for the four Boolean functions listed below and minimize the number of product terms:

$$F_1 = (x, y, z) = \Sigma m(1, 2, 4, 6)$$

$$F_2 = (x, y, z) = \sum m(0, 1, 6, 7)$$

$$F_3 = (x, y, z) = \sum m(2, 6)$$

$$F_4 = (x, y, z) = \Sigma m(1, 2, 3, 5, 7).$$
 (12)

(ii) Write short note on CPLD.

(4)

•	14.	(a)	Dra	w and explain the interface of the following:	•	•
•			(i)	TTL driving CMOS load	(8)	•
			(ii)	CMOS driving TTL load.	(8)	
		•		\mathbf{Or}		
		(b)	(i)	List and explain the characteristics of MOS logic families.	(8)	
ı		-	(ii)	Mention the advantages of ECL over other IC technologies.	(8)	
	15 .	(a)	(i)	Derive a CMOS complex gate for the logic $F = AB + AC + BC$.	function (10)	
			(ii)	Explain why are MOS ICs especially sensitive to static char	ge? (6)	
		-		Or	-	
		(b)	(i)	Explain the important characteristics of NMOS logic.	(6)	
			(ii)	Draw and explain the basic NMOS NAND and NOR gates.	(10)	• .