

~~		,	:					**	
Reg. No.:				:		, .	ŀ		l
	1		· !	!	1				

Question Paper Code: 60459

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fifth Semester

Electrical and Electronics Engineering

EC 2314/10144 EC 502/EC 2361/10133 EE 502 – DIGITAL SIGNAL PROCESSING

(Common to Electronics and Communication Engineering and Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What is quantization error?
- 2. What is Nyquist rate of the analog signal?
- 3. Given a difference equation y(n) = x[n] + 3x[n-1] + 2y[n-1]. Determine the system function H(z).
- 4. Find the stability of the system whose impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$.
- 5. Differentiate IIR and FIR filter.
- 6. Give relationship between DTFT and Z transform. What is meant by quantization ever?
- 7. What is the need for employing window for designing FIR filter?
- 8. What is Warping effect? What is its effect on frequency response?
- 9. What is meant by bit reversed addressing mode? What is the application for which this addressing mode is preferred?
- 10. Compare the RISC and CISC processors.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Discuss the properties of discrete time sinusoidal signals and continuous time sinusoidal signal. (8)
 - (ii) Consider the analog signal $x(t) = 3\cos 100 \pi t$.
 - (1) Determine the minimum sampling rate required to avoid aliasing.
 - (2) If the signal is sampled at the rate Fs = 200 Hz, What is the discrete time signal obtained after sampling? (8)

Or

- (b) (i) Discuss the quantization of analog signal. (8)
 - (ii) Discuss the sampling of analog signals. (8)
- 12. (a) (i) Find the Z transform and its associated ROC for the following discrete time signal $x[n] = \left(\frac{-1}{5}\right)^n u[n] + 5\left(\frac{1}{2}\right)^{-n} u[-n-1]$. (8)
 - (ii) Evaluate the frequency response of the system described by system function $H(z) = \frac{1}{1 0.5z^{-1}}$. (8)

Or

- (b) Using z-transform determine the response y[n] for $n \ge 0$ if $y[n] = \frac{1}{2}y[n-1] + x[n], \quad x[n] = \left(\frac{1}{3}\right)^n u(n)y(-1) = 1. \tag{16}$
- 13. (a) (i) State and prove convolution property of DFT. (6)
 - (ii) Find the inverse DFT of $X(K) = \left\{7, -\sqrt{2} j\sqrt{2}, -j, \sqrt{2} j\sqrt{2}, 1, \sqrt{2} + j\sqrt{2}, j, -\sqrt{2} + j\sqrt{2}\right\}.$ (10)

Or

- (b) (i) Derive decimation-in-time radix-2 FFT algorithm and draw signal flow graph for 8-point sequence. (8)
 - (ii) Using FFT algorithm, compute the DFT of $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$.

(8)

60459

14. (a) For the analog transfer function H(s) = 2/(s+1)(s+3) determine H(z) using bilinear transformation. With $T = 0.1 \,\mathrm{sec}$. (16)

Or

- (b) Design an ideal high pass filter with $H_d(e^{jw}) = \begin{cases} 1 & \pi/4 \le |\omega| < \pi \\ 0 & |\omega| \le \pi/4 \end{cases}$ using Hamming window with N = 11.
- 15. (a) Explain Von Neumann, Harvard architecture and modified Harvard architecture for the computer. (16)

Or

- (b) (i) Explain how convolution is performed using a single, MAC unit (8)
 - (ii) Discuss the addressing modes used in programmable DSPs. (8)