

Reg. No.	• :						
_		1					

Question Paper Code: 60450

·B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester

Electronics and Communication Engineering

EC 2254/EC 44/10144 EC 405/EC 1254/080290022 — LINEAR INTEGRATED CIRCUITS

(Regulations 2008/2010)

(Common to PTEC 2254 Linear Integrated Circuits for B.E. (Part – Time) – Third Semester – ECE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. State the limitations of discrete circuits.
- 2. Why do we use Aluminium for metallization?
- 3. State reasons why integrator is called "lossy".
- 4. What is a precision rectifier?
- 5. With the equations, show how is a multiplier can be used for finding phase angle difference between two signals.
- 6. Define pull-in time as referred to PLL.
- 7. What output voltage would be produced by a D/A converter whose output range is 0 to 10 V and whose input binary number is 0110 for a 4 bit DAC.
- 8. What is the main drawback of dual slope ADC?
- 9. State the applications of 555 Timer IC.
- 10. Define line regulation with respect to a voltage regulator.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Describe the following with respect to integrated circuit fabrication:
 - (1) Silicon water preparation

(6)

(2) Dielectric isolation.

- (6)
- (ii) Explain why inductors are difficult to fabricate in ICs.

(4)

- Or
- (b) (i) Draw the circuit diagram of a basic current mirror and explain its operation. (8)
 - (ii) For the current mirror circuit shown in fig. (11. b. (ii)), determine the emitter current in transistor Q_3 if $\beta = 100$ and $V_{BE} = 0.75 V$. (8)

Figure – 11. (b) (ii)

- 12. (a) (i) What do you understand by an Instrumentation Amplifier? (2)
 - (ii) State the requirements of a good Instrumentation Amplifier. (4)
 - (iii) Draw the circuit diagram and explain the working of instrumentation Amplifier.
 - (iv) Mention the specific advantages of three op-amp Instrumentation Amplifier circuit. (4)

Or

- (b) (i) What do you understand by an Integrator? (2)
 - (ii) Draw and explain an deal active op-amp Integrator ckt (4)
 - (iii) Draw the I/O waveforms for: integrator $(3 \times 1/2 = 1\frac{1}{2})$
 - (1) Step input signal
 - (2) Square wave input signal
 - (3) Sine wave input signal

		(iv)	Derive the expression for change in output voltage.	(3)
		(v)	List the applications of practical Integrator. (1	[½)
•		(vi)	Design a practical integrator circuit with a dc gain of 10, integrate a square wave of 10 KHZ.	to (4)
13.	(a)	(i)	Explain, with necessary equations, the basic circuits of Linearize transconductance multiplier and Differential V-I converter Herential the Four quadrant variable transconductance multiplicircuit.	nce
	•	(ii)	Explain the working of a divider circuit using multiplier IC.	(6)
			\mathbf{Or}	
•	(b)	(i)	Draw the block diagram of VCO and explain its operation. A derive the frequency of oscillator.	lso 10)
		(ii)	Draw the circuit of a PLL used as AM detector and explain operation.	its (6)
14.	(a) .	(i)	Explain the flash type ADC. What are its merits and demerits? (10)
		(ii)	Write a note on high speed sample and hold circuits.	(6)
			\mathbf{Or}	
•	(b)	(i) ·	With circuit, explain current mode types of DAC's compare w voltage mode type.	ith 10)
		(ii)	What are over sampling data converters?	(6)
15 .	(a)	(i)	Explain the working of monostable multivibrator. (14)
		(ii)	What are opto-couplers?	(2)
	•		\mathbf{Or}	
	(b)	(i)	Explain the working of a general purpose voltage regulator. (14)
	•	(ii)		(2)