

Reg No				-			
Reg. No.		1					

Question Paper Code: 60448

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

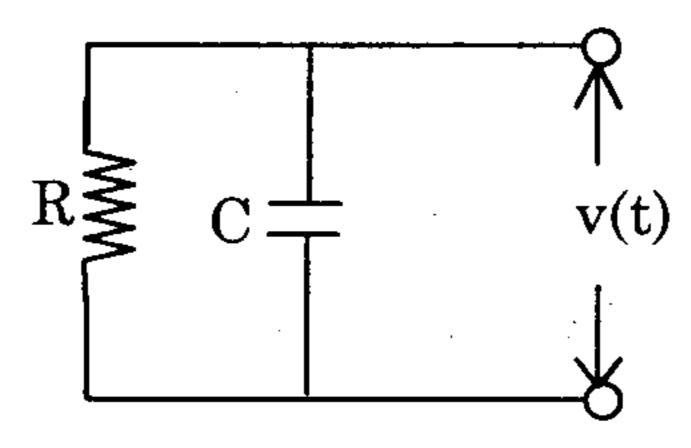
Fourth Semester

Electronics and Communication Engineering

EC 2252/EC 42/EC 1252/080290020 — COMMUNICATION THEORY

(Regulations 2008)

(Common to PTEC 2252 Communication Theory for B.E. (Part-Time)
Third Semester – ECE – Regulations 2009)


Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. For the baseband signal $m(t) = \cos(w_m t)$, find the DSB-SC signal and sketch its spectrum.
- 2. Define VSB and state any one of its application.
- 3. Define the modulation index of FM.
- 4. What is the need for pre emphasis?
- 5. Draw a random variable. Specify the sample space and the random variable for a coin tossing experiment.
- 6. Calculate thermal noise voltage across the simple RC circuit shown with $R=1k\ \Omega$ and $C=1\mu F$ at $T=27^{\circ}C$.

- •7. What are the methods to improve FM threshold reduction?
- 8. What is capture effect?
- 9. State source coding theorem.
- 10. Define Shannon's channel coding theorem.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Define Amplitude modulation. How an amplitude modulated signal can be generated using a non-linear modulator circuit? (8)
 - (ii) What is a DSB-SC signal? Write the working of a synchronous detector used to detect a DSB-SC signal with the output amplitude spectrum of each block. (8)

Or

- (b) (i) Discuss in detail about frequency translation and frequency division multiplexing technique with diagrams. (10)
 - (ii) Compare Amplitude Modulation and frequency Modulation. (6)

•	12.	(a)	(i)	The message signal $m(t) = a \cos(2\pi f_m t)$ is used to either frequence	ency	•
				modulate or phase modulate the carrier $A_c\cos(2\pif_c t)$. Find	the	
•				modulated signal in each case.	(4)	•
			(ii)	Bring out the relationship between PM and FM.	(4)	
			(111)	Describe a method each for generation and demodulation of	(0)	
	•			signal. Or	(8)	
•		(b)	(i)		orm	
•	•	` ,	` '	$u(t) = 100 \cos[2\pi f_c t + 4 \sin 2000 \pi t]$ where $f_c = 10$ MHz. Detern		4
•				the average transmitted power, peak phase deviation and p	eak	
		•		frequency deviation. Is this an FM or a PM signal? Explain.	(6)	
			(11)	With the relevant expressions and figures (if any), compare		
•			•	contrast narrowband and wideband FM.	(10)	•
	13.	(a)	Writ	e short notes on Shot noise, Thermal noise, White noise.		•
	10.	, (a)	4411	Or		
		(b)	Writ	e the details about narrow band noise and the properties	of	•
			qua	drature components of narrowband noise.		
•	14.	(a)	(i)	Draw the super heterodyne receiver and explain the operation		
				each block.	(10)	
•			(ii)	Derive the figure of merit for AM system for non coherent syst	em,	
			•	with suitable assumptions. Or	(6)	
		29. \	4.5			
		(b)	(i)	Derive the figure of merit of a FM system.	(10)	
			(ii)	Explain FM threshold effect.	(6)	
			73			•
	15.	(a)	(1)	Consider a discrete memory less source with seven possible symbol $X_i = \{1, 2, 3, 4, 5, 6, 7\}$ with associated probability		
•				$Pr = \{0.37, 0.33, 0.16, 0.07, 0.04, 0.02, 0.01\}$. Construct	•	•
				Huffman's code and determine the coding efficiency		
	•		· .		(10)	
			(ii)	A Discrete memory less source emits 5 symbols whose associa	ted	• .
				probabilities are as given below. Construct Shannon Fano code	and	•
-				determine the efficiency.	· (6)	
				Symbols: X0 X1 X2 X3 X4		
•	•			Probabilities: 0.4 0.19 0.16 0.15 0.1	_	•
	•		•	\mathbf{Or}	•	•
		(b)	(i)	Derive the channel capacity of a continuous band limited wl	nite	
					(10)	-
		•	(ii)	Discuss about rate distortion theory.	(6)	
		ı		•	•	