Reg. No.:

Question Paper Code: 60524

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester

Electronics and Instrumentation Engineering

EI 2201/EI 33/EE 1202/10133 EI 303/080300001 — ELECTRICAL MACHINES

(Common to Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. State the conditions which determines if a DC machine is generating or motoring.
- 2. Write the voltage equation of DC motor.
- 3. Enumerate the losses in a transformer.
- 4. What are the different types of transformers?
- 5. What is synchronous speed?
- 6. What is the purpose of damper winding?
- 7. Name the various starters used for starting a 3 phase Induction motor.
- 8. What is synchronous speed of an induction motor running at 2900 r.p.m. with 50 Hz supply?
- 9. State double revolving field theory.
- 10. Why single phase induction motor is not self starting?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Draw and explain the construction and principal of operation of a DC generator. (10)
 - (ii) A 10kW, 220 V, DC 6 pole shunt motor runs at 1000 rpm. Delivering full load. The armature has 534 lap connected conductors. Full load copper loss is 0.64 kW. The total brush drop is 1 volt. Determine the flux per pole neglecting shunt current. (6)

		(b)	(i)	DC s	and explain the characteristic of a DC shunt mo eries motor. Compare the DC shunt and series eteristics and applications.	
			(ii)		the speed equation and explain how to control the sp motor by flux control method.	eed of a (6)
	12.	(a)	(i)	Expla	n the construction and working principle of a transfor	mer. (8)
			(ii)	Draw supply	and explain the phasor diagram of a single-phase tran ring	sformer
-		•		(1)	lagging load	
				(2)	leading load and	
				(3)	Upf load.	(8)
· -	•				\mathbf{Or}	
		(b)	(i)		the term 'voltage regulation' of a transformer and design sion for voltage regulation.	rive the (6)
			(ii)		n how equivalent circuit of single phase transformered from open circuit and short circuit test.	can be (10)
	13.	(a)			ily of V curve for different loading of a synchronous m procedure to obtain the same experimentally in a lab.	
•					Or	
		(b)	of 5.	5 Ohm	or connected synchronous motor has a synchronous rest, it operates at rated terminal voltage and draws oply at 0.8 leading p.f. Find its p.f. when the motor shouth same excitation.	750 kW
	14.	(a)	(i)	Expla	n the concept of rotating magnetic field production.	(8)
			(ii)		the torque-slip equation for a 3 phase induction mo e equation for slip at which maximum torque occurs.	tor and (8)
					\mathbf{Or}	
•		(b)	Expl		one method of starting employed in 3-phase cage in	duction (16)
	15.	(a)	(i)	Using induct	double revolving field theory, explain why a single on motor is not self-starting.	phase (10)
			(ii)	Explai motor.	n the construction and working of shaded pole in	duction (6)
					Or	
		(b)	(i)	Explai	n the working principle of repulsion type motor.	(8)
			(ii)	Descri motor.	be the construction and its working of switched relu	actance (8)
• •					· · · · · · · · · · · · · · · · · · ·	