				 			_	
Reg. No.:	·				į			
		 <u> </u>		 	 	 		

Question Paper Code: 60537

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Sixth Semester

Electronics and Instrumentation Engineering

EI 2353/EI 63/10133 EI 603 — DIGITAL SYSTEM DESIGN

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Which logic family performs better in a high-noise environment: CMOS or TTL? Why?
- 2. What is the main advantage of ECL over other IC technologies? In what type of application should ECL not be considered?
- 3. List two major differences between PAL and PEA.
- 4. What does PAL10L8 specify?
- 5. Differentiate volatile and non-volatile memory.
- 6. What is memory expansion?
- 7. What does the terms SPAN and offset mean with reference to ADC?
- 8. What is the basic difference between Time and frequency measurement?
- 9. Give two valid reasons that justify the need for testing of digital circuits.
- 10. Define the term controllability and observability with respect to design for testing of logic circuits.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Design a full adder using CMOS and dynamic CMOS. Also discuss their performances in detail.

Or

- (b) With a neat sketch explain the
 - (i) TTL to CMOS
 - (ii) CMOS to TTL interfacing.
- 12. (a) How does a PLA differ form PAL? Implement the following functions using Read Only Memory (ROM)

$$W(A, B, C, D) = \Sigma m(3, 7, 8, 9, 11, 15)$$

$$X(A, B, C, D) = \Sigma m(3, 4, 5, 7, 10, 14, 15)$$

$$Y(A, B, C, D) = \Sigma m(1, 5, 7, 11, 15).$$

Or

- (b) Realize the sum of product expression $Y = \sum m(0,5,10,15)$ using 4:1 multiplexers.
- 13. (a) (i) Discuss on the design of 64×64 memory. (8)
 - (ii) Show how two 16×4 memory can be connected to implement 16×8 memory. (4)
 - (iii) Comment on programming of ROMs. (4)

Or

- (b) (i) Demonstrate with a timing diagram, the access time of PROM. (4)
 - (ii) How many address lines are required for a memory that has following number of bits?
 - **(1)** 1024
 - (2) 4098
 - (3) 256
 - (4) 16,384. (4)
 - (iii) With a typical three-transistor DRAM cell explain the Read and write operation with timing diagram. (8)

14. (a) With a neat functional diagram, explain four decimal digit multiplexed display.

Or

- (b) With a neat functional diagram, explain the operation of frequency counter.
- 15. (a) Explain the concept of generic boundary scan in detail.

Or

(b) Explain any one of the system level design for test approach in detail.