A Many

					 				
			1	[.					
		i i	t	j	'	·	•		
Reg. No.:	1	l l	į.		;	,			
KAP NA.:	1 1	l l	1						
10050 1100 1	ł (l l	1					•	
	i i	: I			 		<u></u>		

Question Paper Code: 60530

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester

Electronics and Instrumentation Engineering

EI 2254/EI 46/ME 1260/080300011/10133 EI 406 — APPLIED THERMODYNAMICS

(Common to Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

(Use of steam tables, refrigeration tables, psychrometric charts and heat and mass transfer tables are permitted)

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What do you understand by path function and point function?
- 2. State carnot theorem.
- 3. Write the air standard efficiency of a Dual cycle.
- 4. What is the maximum compression ratio of an SI engine?
- 5. Compare impulse turbine with reaction turbine.
- 6. Define the term 'stage efficiency' for a reaction turbine.
- 7. List the advantage of multi-stage compressors.
- 8. Show the effect of subcooling on T-s diagram for an vapour compression refrigeration system.
- 9. A steam pipe 10 cm I.D. and 11 cm O.D is covered with an insulating substance (k = 1 W/m K). If convective heat transfer coefficient between the insulation surface and, air is 8 W/m² K. Find the critical radius of insulation.
- 10. What is Gray body?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) A gas undergoes a thermodynamic cycle consisting of the following processes:
 - (i) Process 1-2: constant pressure with p=1.4 bar to $V_1=0.028$ m³, $W_{12}=690$ kJ.
 - (ii) Process 2-3: compression with pV = constant, $W_{23}=0$, $U_3=U_2$.
 - (iii) Process 3-1: constant volume $U_1-U_3=-26.4$ kJ. There are no significant changes in KE and PE.
 - (1) Sketch the cycle on a p-v diagram
 - (2) Calculate the net work for the cycle in kJ.
 - (3) Calculate the heat transfer for process 1-2.
 - (4) Show that $\Sigma Q_{cycle} = \Sigma W_{cycle}$.

Or

- (b) What is a steady flow process? Derive the steady flow Energy Equation.
- 12. (a) Derive the efficiency of a Diesel cycle. Also draw its thermodynamic diagram. (16)

Or

- (b) Explain the working of both 2-stroke engines and 4-stroke engines. (16)
- 13. (a) Consider a steam power plant operating on simple ideal Rankine cycle steam enters the turbine at 3 Mpa and 350°C and is condensed in condenser at pressure of 10 kPa. Determine:
 - (i) The thermal efficiency
 - (ii) The thermal efficiency if the boiler pressure is raised to 15 MPa while- the turbine inlet temperature is maintained at 600°C.

Or

- (b) (i) Explain velocity and pressure compounding steam turbine, showing pressure and velocity variations along the axis of the turbine. (6)
 - (ii) Explain the working and layout of modern steam power plant. (10)

14. (a) The low pressure cylinder of a two-stage double-acting reciprocating air compressor running at 120 rpm has a 50-cm diameter and 75-cm stroke. It draws air at a pressure of 1 bar and 20°C and compresses it adiabatically to a pressure of 3 bar. The air is then delivered to the intercooler, where it is cooled at constant pressure to 35°C and is then further compressed polytropically (index n = 1.3) to 10 bar in high pressure cylinder. Determine the power required to drive the compressor. The mechanical efficiency of the compressor is 90 % and motor efficiency is 86%.

Or

- (b) Sketch the layout of an air conditioning system and explain the functions of each component in it.
- 15. (a) (i) A mild steel tank of wall thickness 20 mm contains water 100°C. Estimate the loss of heat per square meter area of the tank surface, if the tank is exposed to an atmosphere at 20°C. Thermal conductivity of steel is 50 W/mK. White heat transfer coefficient for outside and inside the tank are 10 W/m² K and 2850 W/m² K respectively. What will be the temperature on the outside of the tank wall?
 - (ii) What is extended surfaces and where it's employed? (2)

Or

- (b) (i) Water at 50°C enters 50 mm diameter and 3 m long tube with a velocity of 0.8 m/s. The tube wall is maintained at a constant temperature of 90°C. Determine the heat transfer coefficient and the total amount of heat transfer if the exit water temperature is 70°C. (12)
 - (ii) Write a short note on thermoelectric cooling. (4)