

Question Paper Code: 60376

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester

Computer Science and Engineering

CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2202 – Digital Principles and System Design for B.E. (Part-Time) Second Semester – CSE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Convert (101101.1101)₂ to decimal and hexadecimal form.
- 2. What are the limitations of Karnaugh map?
- 3. What is the drawback of serial adder? For which applications are they preferred?
- 4. Distinguish between half adder and full adder.
- 5. Draw the truth table and circuit diagram of 4 to 2 encoder.
- 6. Distinguish EEPROM and flash memory.
- 7. List any two mechanisms to achieve edge triggering of flip flops.
- 8. What is a ring counter?
- 9. What is an implementation table?
- 10. Write short notes on Static-1 hazard.

PART B
$$-$$
 (5 × 16 = 80 marks)

11. (a) Simplify the following Boolean function using Quine-McClusky method $F = (A, B, C, D, E) = \sum m(0,1,3,7,13,14,21,26,28) + \sum d(2,5,9,11,17,24). \quad (16)$

Or

(b) (i) Simplify the given Boolean function in POS form using K-map and draw the logic diagram using only NOR gates.

$$F = (A, B, C, D) = \pi M(0, 1, 4, 7, 8, 10, 12, 15) + d(2, 6, 11, 14)$$
 (10)

- (ii) Convert 78.5₁₀ into binary. (3)
- (iii) Find the dual and complement of the following Boolean expression. xyz'+x'yz+z(xy+w). (3)

12. (a)	Design a full adder using 2 half adders.	
	\mathbf{Or}	
(b)	Design a combinational circuit to convert binary to gray code.	
13. (a)	(i) Write notes on PLA and PAL. (8)	
	(ii) Implement $F = (A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$ using 8×1 multiplexer. (8)	
	\mathbf{Or}	
(b)	(i) Write notes on RAM, its operations and its types. (10)	•
	(ii) Design a 4 - input priority encoder. (6)	
14. (a)	A clocked sequential circuit is provided with a single input x and a single output z. Whenever the input produces a string of pulses 111 or 000 and at the end of the sequence it produces an output $z = 1$ and overlapping is not allowed. (16)	
	(i) Obtain the state diagram	
	(ii) Obtain the state table	
•	(iii) Design the sequence detector.	
	\mathbf{Or}	
(b)	Using D flip-flops, design a synchronous counter, to count the following repeated binary sequence 0,1,2,4,6. Write the VHDL code for the same. (16)	• • •
15. (a)	Design an asynchronous sequential circuit with two input x and y and with one output z whenever y is 1, input x is transferred to z. when y is 0, the output does not change for any change in x. (16)	
	\mathbf{Or}	
· (b)	(i) Define: Hazards. (2)	· •
	(ii) Explain about:	
	(1) Static Hazards (5)	
	(2) Dynamic Hazards (5)	
	(3) Essential Hazards. (4)	