23/12/16/2

	· ·							
	1	1		ŀ				
		l I						
	1		1	i			•	
Reg. No.:				1		i		
DPU INT		i I		i				
				ŀ				
	1 1	l 1						

Question Paper Code: 60386

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016

Fifth Semester

Computer Science and Engineering

CS 2303/CS 53/10144 CS 504/CS 1303 — THEORY OF COMPUTATION

(Common to Seventh Semester Information Technology)

(Regulations 2008/2010)

(Also Common to PTCS 2303 – Theory of Computation for B.E. (Part-Time) Fifth Semester – CSE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Mention the principle of mathematical induction.
- 2. Specify any two applications of finite automata.
- 3. What is regular expression? Mention the hierarchy of its operators.
- 4. Mention the difference between regular expression and regular language with an example.
- 5. What is the use of context-free grammar?
- 6. Is the grammar E->E+E | id ambiguous? Justify
- 7. What is Chomsky normal form?
- 8. Are the context free languages closed under intersection? Justify.
- 9. What is recursive language?
- 10. Mention the difference between decidable and undecidable problems.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Define finite automata. Explain the difference between non-deterministic and deterministic finite automata with an example.
	•	'(ii)	Construct a non-deterministic finite automata (NFA) with ε -transition(s) accepting set of all binary strings with n number of 0's followed by m number of 1's. Compute the ε -closure () for state in the NFA.
			\mathbf{Or}
	(b)	(i)	Explain the method of constructing NFA without ε -transition for a NFA with ε -transitions. (8)
		(ii)	Construct deterministic finite automata (DFA) accepting set of all binary strings having 101 as a sub string. (8)
12 .	(a)	(i)	Prove that if L is accepted by a DFA, then L is denoted by a regular expression. (8)
		(ii)	What is pumping lemma for regular set? Explain its use with an example. (8)
•			Or
	(b)	(i)	Construct: NFA and DFA for the regular expression $(a/b)*abb$. (10)
		(ii)	Explain the closure properties of regular languages. (6)
13.	(a)	(i)	Let G be a grammar
			$S->aB\mid bA$
			$A->a \mid aS \mid bAA$
		•	$B->b \mid bS \mid aBB$
			For the string abbaab find leftmost and rightmost derivations, and parse tree. Find the language accepted by the grammar. (10)
		(ii)	Construct push down automata for the grammar
			S->aAA
			$A - > aS \mid bS \mid a. \tag{6}$
			\mathbf{Or}

Construct push down automata for $L = \{a^n b^n \mid n >= 1\}$. (b)

Explain the equivalence between push down automata and context free grammar.

					-	
,	14.	(a)	. (i)	Construct a Turing machine for $L = \{0^n1^n \mid n \ge 1\}$.	(10)	
			(ii)	Obtain Greibach normal form of $S \to aSb \mid ab$.	(6)	
	•			\mathbf{Or}		
		(b) •	(i)	Which of the following languages are context free? Justify it.		
				$(x)L = \left\{a^nb^nc^md^m \mid n, m \geq 1\right\}.$	•	
				$(y)L = \{a^nb^mc^md^n \mid n, m \geq 1\}.$	(8)	
-		-	(ii)	Explain any two higher-level conceptual tools for Turing mac construction.	hine (8)	
	15 .	(a)	(i)	Explain a language that is not recursively enumerable.	(8)	
			(ii)	Discuss the concept of P and NP problems with examples.	(8)	
		`.		\mathbf{Or}		•
		(b)	(i)	Discuss any two undecidable problems about Turing machine.	(8)	·
		* /	(ii)	Is the post correspondence problem undecidable? Justify answer.	your (8)	
•		•			•	

 \cdot .

•