Reg. No.:					

100 Marks

Question Paper Code: 41104

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2015.

First Semester

Civil Engineering

14UCY104 - ENGINEERING CHEMISTRY

		(Common to Mecha	anical Engineering)				
	Duration: Three hours	S Answer ALI	Maximum:				
		PART A - (10 x	x 1 = 10 Marks)				
1. \	Which of the following r	may be used as initia	tor in addition polyi	nerization?			
	(a) Potassium di chrom	ate (b) Po	tassium sulphate				
	(c) Benzoyl peroxide	(d) So	dium hydroxide				
2. 1	Polycarbonate is also cal	led as					
	(a) Perlon-U	(b) Fluon	(c) HDPE	(d) Lexan			
3.	Which of the following	is a neutral refracto	ry?				
	(a) Fire clay	(b) Bakelite	(c) Magnesite	(d) Graphite			
4.	The example of solid lubricant is						
	(a) Grease	(b) Vaseline	(c) MoS ₂	(d) Castor oil			
5.	Presence of copper as i	mpurity in zinc caus	es				

(a) Water line corrosion

(c) Pitting corrosion

(b) Crevice corrosion

(d) Galvanic corrosion

6.	As the a	acidity increa	ises, the rate of corr	rosion						
	(a) No e	effect	(b) Increases	(c) Decre	ease ((d) Remainin	g the same			
7.	e called as									
	(a) Supe	er catalyst	(b) Promoters	(c) Catal	ytic poison	(d) Inhibitor				
8.	Adsorp	tion of H ₂ ga	s on Ni is an examp	ole of						
	(a) Phys	sisorption	(b) Absorp	otion (c) C	Chemisorption	d) Zeolite	e process			
9.	The wa	ve length reg	gion of near UV rad	iation is						
	(a) 400ı	nm -750 nm		(b) 800n	m-7200 nm					
	(c) 2001	nm-400nm		(d) 0nm-	100nm					
10. Atomic structure of the crystal is founded by										
	(a) XRD			(b) UV s	(b) UV spectroscopy					
	(c) IR s	pectroscopy		(d) Flam	e photometry					
			PART - B	$(5 \times 2 = 10 \text{ Ma})$	rks)					
11.	What is	polymerizat	ion?							
12.	What an	re refractorie	s? How are they cla	ssified?						
13.	Define	the terms "F	lash point and Fire J	point".						
14.	What a	re the limitat	ions of Freundlich's	s adorption isot	herm?					
15.	What a	re chromopo	res?							
		•		5 x 16 = 80 Ma	arks)					
16.	(a) (i)	Describe the mechanism	ne steps involved			ylene by fr	ee radical			
	(ii)	Describe polyurethan	the preparation, e.	properties a	nd applicat	ion of Te	eflon and (8)			
				Or						
	(b) (i)	Explain wh	y natural rubber nee	ds vulcanizatio	on. How is it	carried out?	(8)			

		(ii)	Write the differences between addition and condensation polymerization reaction with an suitable example for each type. (8	
17.	(a)	(i)	Give the preparation, properties and uses of magnesite. (8	3)
		(ii)	Discuss any four important properties of a lubricant. (8	()
			Or	
	(b)		Describe the process of manufacture of Portland cement with a schematidiagram. (8	3)
		(11)	Write short notes on "carbon nano tubes". (8	,)
18.	(a)	(i)	Explain the mechanism for rusting iron on the basis of electrochemical corrosion (8	
		(ii)	What is cathodic protection? How is sacrificial anode method applied for corrosion control.	
			Or	
	(b)	(i)	Give an account of any four factors that influence the rate of corrosion. (8	5)
		(ii)	What are the constituents and functions of paint? (8	5)
19.	(a)		cuss Langmuir theory of adsorption and derive the expression for Langmuin nolayer adsorption isotherm. (16	
			Or	
	(b)	(i)	Discuss any four factors which influence the adsorption of gas on solid. (8	5)
		(ii)	Distinguish between physical adsorption and chemical adsorption. (8	5)
20.	(a)	(i)	Derive the Beer - lambert's law. Write its limitations. (6	j)
		(ii)	Give a brief account on estimation of nickel by atomic absorption spectroscopy.	
			(10))
			Or	
	(b)	(i)	Explain the principle and instrumentation of UV visible spectroscopy. (8	()
		(ii)	How will you estimate the amount of sodium by flame photometry? (8	;)