Reg. No. :

Question Paper Code: 11002

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2015.

First Semester

Civil Engineering

01UMA102 - ENGINEERING MATHEMATICS - I

(Common to all branches)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

PART A -
$$(10 \times 2 = 20 \text{ Marks})$$

1. Two of the Eigen values of $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 3 and 6. Find the Eigen value of A^{-1} .

- 2. State Cayley Hamilton theorem and its uses.
- 3. Find the center and radius of the sphere $3(x^2+y^2+z^2)-2x-3y-4z-22=0$.
- 4. Find the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 x + 2y + z 5 = 0$ at point (1, 1, 1).
- 5. Find the radius of curvature for $y = e^x$ at the point where it cuts the Y- axis (or) at x=0.
- 6. Find the envelope of the family of curve $y = mx + \frac{a}{m}$.
- 7. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.

8. If $x = r \cos \theta$ and $y = r \sin \theta$, then find $\frac{\partial(r, \theta)}{\partial(x, y)}$.

Maximum: 100 Marks

- 9. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + y^2) dy dx$.
- 10. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xy^{2} z \, dz dy dx$.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) Find the Eigen values and Eigenvectors of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}.$ (8)

(ii) Verify Cayley-Hamilton theorem find A⁴ and A⁻¹ when A=
$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. (8)

Or

- (b) Reduce the quadratic form $2x^2 + y^2 + z^2 + 2xy 2xz 4yz$ to canonical form by orthogonal reduction. Also find the nature of the quadratic form. (16)
- 12. (a) (i) Find the center, radius and area of the circle $x^2+y^2+z^2-2x-4y-6z-2=0$, x+2y+2z=20. (8)

(ii) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$ 2x+3y+4z=8; is a great circle. (8)

Or

- (b) (i) Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 + x - 3y + 2z - 1 = 0$; 2x + 5y - z + 7 = 0 and cuts orthogonally the sphere $x^2 + y^2 + z^2 - 3x + 5y - 7z - 6 = 0$. (8)
 - (ii) Find the equation of the right circular cylinder whose axis is the line x = 2y = -z and radius 4. (8)

13. (a) (i) Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (8)

(ii) Find the circle of curvature of the curve
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$. (8)

2

11002

- (b) (i) Find the equation of the evolute of the ellipse $\frac{x^2}{a^2} + \frac{x^2}{b^2} = 1.$ (8)
 - (ii) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$, where *a* and *b* are connected by

$$a^2 + b^2 = c^2$$
, *c* being a constant. (8)

14. (a) (i) Given the transforms $u = e^x \cos y \& v = e^x \sin y$ and that ϕ is a function of u & v and

also of
$$x \& y$$
, prove that $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial v^2} \right).$ (8)

(ii) Expand e^x cos y in powers of x and y as far as the terms of third degree using Taylor's expansion.
(8)

Or

- (b) (i) Examine $f(x, y) = x^3 + y^3 12x 3y + 20$ for its extreme values. (8)
 - (ii) A rectangular box open at the top is to have a volume of 32 c.c. Find the dimensions of the box, that requires the least material for its construction.
- 15. (a) (i) Change the order of the integration and hence evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx dy$. (8)

(ii) Evaluate
$$\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2 + y^2) dy dx$$
 by changing into polar coordinates. (8)

- Or
- (b) (i) Find, using a double integral, the area of the cardioids. $r = a(1 + \cos \theta)$. (8)
 - (ii) Find the volume of that portion of the ellipsoid $\frac{x^2}{a^2} + \frac{x^2}{b^2} + \frac{z^2}{c^2} = 1$, which lies in the first octant using triple integration. (8)