Reg. No. :											l
------------	--	--	--	--	--	--	--	--	--	--	---

Question Paper Code: 42264

M.E. DEGREE EXAMINATION, MAY 2015.

Second Semester

STRUCTURAL ENGINEERING

$14PSE204-EARTHQUAKE\ ANALYSIS\ AND\ DESIGN\ OF\ STRUCTURES$

		(Reg	ulation 2014)				
Du	ration: Three hours		Max	imum: 100 Marks			
		(IS code	es are permitted)				
		Answer	ALL Questions.				
		PART A -	$(5 \times 1 = 5 \text{ Marks})$				
1.			of members, connected to electrical distortion is known a	* *			
	(a) Beam	(b) Truss	(c) Lintel	(d) Cable			
2.	Rate of change of ang	gular velocity is ca	alled				
	(a) Acceleration		(b) Angular accelerati	on			
	(c) Kinetic energy	y	(d) Centrifugal force				
3.	Which of the following force?	ng is most efficien	t member to increase stiffner	ss to resist lateral			
	(a) Column	(b) Beam	(c) In filled brick wall	(d) Shear wall			
4.	The property of the many further increase in		ws it to deform continuously as	at slow rate without			
	(a) Fatique	(b) Creep	(c) Plasticity	(d) Resilience			
5.	Which shape of build	ing in plan more e	efficient to resist seismic force	ce?			
	(a) Rectangle in p	olan	(b) Circular in plan	(b) Circular in plan			
	(c) Triangle in pla	an	(d) I shape in plan				

PART -	B (5	x 3	= 15	Marks)
--------	------	-----	------	--------

6.	Differentiate magnitude and intensity of an earthquake.					
7.	What are the objectives of earthquake resistant design of structures?					
8.	When do you perform the dynamic analysis?					
9.	Sketch a beam column junction of a reinforced cement concrete frames as per ductile detailing.					
10.	Differentiate between soft storey and weak storey.					
	PART - C (5 x $16 = 80 \text{ Marks}$)					
11.	(a) (i) Explain the working principle of seismograph with a neat sketch.	(8)				
	(ii) Explain in detail about the seismic zoning map of India.	(8)				
	Or					
	(b) (i) How characteristics is the strong Earth quake motion.	(8)				
	(ii) Explain about Microzonation.	(8)				
12.	(a) How do you evaluate earth quake forces as per codal provisions?	(16)				
	Or					
	(b) (i) Enumerate the salient features of response spectrum method.	(8)				
	(ii) Explain about the effects of various irregularities in the seismic performance the structures.	e of (8)				
13.	(a) What are all the design consideration and guidelines to be followed while design masonry structures to resist earthquake?	ning (16)				
	Or					
	(b) Explain about the types of building which are efficient. (16)				
14.	(a) Design a beam as per IS code for the following data					
	Span of the span $= 6m$					
	Moment due to seismic force $= 12kN-m$					
	Shear force $= 25kN$					
	Use M20 grade of concrete and Fe415 steel (16)				

Or

	(b)	Explain the step by step procedure to determine the lateral forces and design	with
		illustrative example of a RC building.	(16)
15.	(a)	What are all the basic concept of seismic base isolation?	(16)
		Or	
	(b)	Write seismic effects of vibration control techniques.	(16)