616/16

!			f				 J		
		l	ì						
]	!			•		
Reg. No.			<u> </u>	į			1		
NCZ. NU.	1		1						
							1		
					1	1	1		

Question Paper Code: 27281

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Software Engineering

EMA 004 - NUMERICAL METHODS

(Common to 5 Year M.Sc. Software Systems)

(Regulations 2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. State the criterion for convergence in Newton's method.
- 2. What is the order of convergence for the method of False Position?
- 3. State the condition for the convergence of Gauss-Seidel method.
- 4. Distinguish between Gauss elimination method and Gauss Jordon method.
- 5. Write down the Newton's divided difference formula.
- 6. State Stirling's formula of interpolaiton.
- 7. Write Newton's divided difference interpolation formula for first derivative of the function y = f(x).
- 8. What is the order of error in Simpson's one-third rule?
- 9. Find y(0, 1) given $y^1 = -y$, y(0) = 1 by Euler's method.
- 10. What are the advantages of Runge-Kutta method over Taylor's series method?

1

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) Find the positive root of $x - \cos x = 0$ by biseciton method. (8)

(ii) Solve $x^3 - 4x + 1 = 0$ by Regula Falsi method. (8)

OR

- (b) (i) Find the square root of 2 by fixed point iterative method. (8)
 - (ii) Find by Newton's method, the positive root $4x e^x = 0$ that lies between 2 and 3. (8)
- 12. (a) (i) Solve the following system of equations by Gauss Elimination method:

$$2x + 3y - z = 5$$

$$4x + 4y - 3z = 3$$

$$2x - 3y + 2z = 2$$
 (8)

(ii) Solve: x + y + z = 1

$$4x + 3y - z = 6$$

$$3x + 5y + 3z = 4$$

by triangularization method.

(8)

OR

(b) (i) Solve x + 2y + z = 3

•

$$2x + 3y + 3z = 10$$

$$3x - y + 2z = 13$$

By Gauss Jordan method.

(8)

(ii) Solve the following system of equation by Gauss Seidel method:

$$10x - 5y - 2z = 3$$

$$4z - 10y + 3z = -3$$

$$x + 6y + 10z = -3$$
 (8)

13. (a) (i) Construct a polynomial for the data given below by Newton's Forward Interpolation: Find also y when x = 5. (8)

X	4	6	8	10
У	1	3	8	16

(ii) Using Lagrange's interpolation find y(1).

 x
 -1
 0
 2
 3

 y
 -8
 3
 1
 12

OR

(b) (i) From the following table find f(6) using Newton's divided difference formula: (8)

X	1	2	7	8
У	1	5	5	4

(ii) Find $\tan (0.26)$ from the following values of $\tan x$ by Newton's backward difference: (8)

X	0.10	0.15	0.20	0.25	0.30
tan x	0.1003	0.1511	0.2027	0.2553	0.3093

14. (a) (i) A slider in a machine moves along a fixed straight rod. Its distance x cm. along the rod is given below for various values of the time t seconds. Find the velocity of the slider and its acceleration when t = 0.3 second. (8)

t	0	0.1	0.2	0.3	0.4	0.5	0.6
X	30.13	31.62	32.87	33.64	33.95	33.81	33.24

(ii) Evaluate:
$$\int_{0}^{1} \frac{1}{1+x^2} dx$$
 by Trapezoidal rule. (8)

OR

(8)

(b) (i) Find the first derivative of $x^{1/3}$ at x = 50 given the table below:

\mathcal{X}	50	51	52	53	54	55	56
$x^{1/3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

- (ii) Evaluate: $\int_{0}^{1} e^{x} dx \text{ by Simpson's } 1/3^{\text{rd}} \text{ rule.}$ (8)
- 15. (a) (i) Solve: $\frac{dy}{dx} = x + y$, y(1) = 0 Find y(1, 1) by Taylor's series method and compare with exact solution. (8)
 - (ii) Apply Runge-Kutta method of fourth order to calculate y(0, 1) given $\frac{dy}{dx} = x + y$, y(0) = 1. (8)

OR

(b) Solve the boundary value problem $y'' + xy' + y = 3x^2 + 2$, y(1) = 1 by finite difference method. (8)