

Question Paper Code: 27279

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Software Engineering

EMA 002 - ANALYTICAL GEOMETRY AND REAL AND COMPLEX ANALYSIS

(Common to 5 Year M.Sc. Software systems)

(Regulations 2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

1. Evaluate
$$\int_{0}^{\pi} \int_{0}^{\sin \theta} r \, dr \, d\theta.$$

2. Evaluate
$$\int_{0}^{1} \int_{0}^{2} xyz \, dx \, dy \, dz.$$

- 3. Show that the vector $\overrightarrow{A} = (x^2 y^2 + x) \overrightarrow{i} (2xy + y) \overrightarrow{j}$ is irrotational.
- 4. Find a unit normal vector to the surface x = t; $y = t^2$; $z = t^3$ at t = 1.
- 5. Find the equation of the plane through (1, 2, 3) and parallel to the plane 4x + 5y 3z + 7 = 0.

- 6. Find the angle between the lines $\frac{x-1}{2} = \frac{y-3}{0} = \frac{z-1}{-1}$ and $\frac{x}{2} = \frac{y+1}{-1} = \frac{z+2}{1}$.
- 7. Prove that $u = tan^{-1}(y/x)$ is harmonic.
- 8. Prove that the function $f(z) = e^{-z}$ is analytic.
- 9. Find the Taylor series expansion of $f(z) = \sin z$ about $z = \pi/4$.
- 10. Define essential singularity with an example.

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) (i) Evaluate $\iint_R xy \, dx \, dy$, where R is the bounded by the parabola $y^2 = x$ and the lines y = 0 and x + y = 2, lying in the first quadrant. (8)
 - (ii) Evaluate $\iiint_V (xy + yz + zx) dx dy dz$, where V is the region of space bounded by x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3. (8)

OR

- (b) Change the order of integration in $\int_{0}^{a} \int_{x^2/a}^{2a-x} xy \, dy \, dx$ and then evaluate it. (16)
- 12. (a) (i) Find the directional derivative of $\phi = x^2yz + 4xz^2 + xyz$ at (1, 2, 3) in the direction of $2\vec{i} + \vec{j} \vec{k}$.
 - (ii) Prove that $\nabla^2 r^n = n (n+1) r^{n-2}$ and hence deduce $\nabla^2 \left(\frac{1}{r}\right) = 0$. (8)

OR

(b) Verify divergence theorem for $\overrightarrow{F} = (x^2 - yz) \overrightarrow{i} + (y^2 - zx) \overrightarrow{j} + (z^2 - xy) \overrightarrow{k}$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$; $0 \le z \le c$. (16)

13. (a) Show that the liens $\frac{x-4}{5} = \frac{y-3}{-2} = \frac{z-2}{-6}$ and $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z-1}{-7}$ are coplaner. Find their point of intersection and the equation of the plane in which they lie. (16)

OR

- (b) (i) Find the equation of the sphere passing through the points (1, 1, -2) and (-1, 1, 2) having its centre on the line x + y z 1 = 0 = 2x y + z 2. (8)
 - Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$. Also find the point of contact. (8)
- 14. (a) (i) Find the analytic function f(z) = u + iv given $u = e^x [(x^2 y^2) \cos y 2 xy \sin y]$; Also find V. (10)
 - (ii) An analytic function with constant modulus is also a constant. (6)

OR

(b) If
$$f(z) = u + iv$$
 is analytic, find $f(z)$ given that $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (16)

- 15. (a) (i) Evaluate $\int_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle |z+1+i|=2, using Cauchy's integral formula. (8)
 - (ii) Find the Laurent's series of $f(z) = \frac{z^2 1}{z^2 + 5z + 6}$ valid in the region 2 < |z| < 3. (8)

OR

(b) Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + 4)^2 (x^2 + 9)}$$
, using contour integration. (16)