Reg. No.								
		į į	į	i		 		į

Question Paper Code: 27293

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

First Semester

Software Engineering

ESE 013 – PROBLEM SOLVING TECHNIQUES

(Common to 5 Year M.Sc. Software Systems)

(Regulations 2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Name the important factors that affect the efficiency of algorithms.
- 2. What is redundant computation? Give an example code segment.
- 3. Differentiate between GCD and LCM?
- 4. What is meant by histogramming?
- 5. Compare binary search and hash search.
- 6. Write an algorithm to sort an array into descending order.
- 7. List the applications of queue.
- 8. Define Binary Tree.
- 9. Design a recursive tree insertion algorithm.
- 10. Write down the iterative algorithm to solve the Towers of Hanoi problem.

1

$PART - B (5 \times 16 = 80 Marks)$

11.	(a)	(i)	Discuss the steps involved in problem solving.				
		(ii)	Design an algorithm that converts a decimal to octal representation.	(8)			
			OR				
	(b)	(i)	Explain the procedure of top-down design of an algorithm.	(8)			
		(ii)	With the help of suitable code explain the procedure in computing a factorial of a number.	(8)			
12.	(a)	(i)	Explain the procedure of generating a prime number with an example.	(8)			
		(ii)	How will you remove the duplicates from an ordered array? Explain with an example.	(8)			
			OR				
	(b)	(i)	Briefly give a note on computing procedure for the prime factor of an integer.	(8)			
•		(ii)	Discuss the procedure involved in finding the kth smallest element from a randomly ordered array of n elements.	(8)			
13.	(a)	(i)	Explain the two-way merge sort technique for merging two ordered arrays in ascending order. Also develop the corresponding algorithm.	(8)			
		(ii)	Explain in detail the binary search.	(8)			
			OR				
	(b)	(i)	Explain the selection sort algorithm in detail with an example.	(8)			
		(ii)	Design a procedure for "Right and left justifying" of a text without splitting the words and briefly explain.	(8)			

14	(a)	(i)	A dequeue is a linear list that allows insertions and deletions at – both						
			ends. Write procedures for maintaining a dequeue.	(12)					
		(ii)	Design a list searching algorithm that incorporates a sentinel.	(4)					
			OR						
	(b)	(i)	Design an algorithm to search an ordered binary tree for a given alphabetic name. Describe the algorithm with example.	ı (8)					
	•	(ii)	Construct binary tree for the given values. Write down the insertion procedure.	· (8)					
			DANIEL, DAVID, ADAMS, SAMS, HAYES, JOANS, AARONS ENGEL, GRAY.						
15.	(a)	(i)	Explain about Recursive Quick Sort.	(8)					
		(ii)	Give the algorithm for Quick Sort.	(8)					
			OR						
	(b)	Expl	ain the recursive algorithms for Binary Tree Traversal.	(16)					