

Question Paper Code: 27291

M.Sc. (5 Year) DEGREE EXAMINATION, MAY/JUNE 2016

First Semester

Software Engineering

ESE 011 - APPLIED PHYSICS

(Common to 5 Year M.Sc. Software Systems)

(Regulations 2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Give the working principle of Penning gauge in the measurement of Vacuum.
- 2. Write a brief note on I-shaped girders.
- 3. What is meant by cold welding?
- 4. An ultrasonic generator consists of a quartz plate of thickness 0.5 mm and density 2800 kg/m^3 . Find the fundamental frequency of the generator with a quartz plate of Young's modulus $8.8 \times 10^{10} \text{ Nm}^2$.
- 5. Define the term thermal conductivity.
- 6. Write about the working of a Carnot engine as a refrigerator.
- 7. Why are antireflection coatings given?
- 8. What are the uses of scanning electron microscopes?
- 9. What is the difference between spontaneous emission and stimulated emission?
- 10. The refractive indices of core and cladding materials of an optical fiber are 1.50 and 1.45 respectively. Obtain the numerical aperture of the fiber.

$PART - B (5 \times 16 = 80 Marks)$

11.	(a)		circular and a square cantilever are made of same material and have equal a of Cross-section and length. Find the ratio of their depressions for a given d.	
			OR	
	(b)	pun	scribe the principle used in vacuum pumps and gauges. Describe one of the nps and its working. Also explain how low pressure is measured using the	
		gau	ges.	(16)
12.	(a)	Der	rive Sabine's formula of reverberation time.	(16)
			OR	` ,
	(b)	(i)	Discuss the magnetostriction method of producing ultrasonic waves.	(12)
		(ii)	Briefly discuss the engineering applications of ultrasonics.	(4)
13.	(a)	(i)	Explain how the thermal conductivity of a bad conductor can be determined using Lee's Disc method.	(8)
		(ii)	Define Entropy. Explain the entropy – temperature diagram of Carnot's cycle.	(8)
			OR	
	(b)	(i)	State and prove Carnot's theorem.	(8)
		(ii)	Describe the cycle of operations involved in an ideal Otto engine along with its efficiency.	(8)
14.	(a)	(i)	Discuss the principle and method involved in the comparison of illumination between two light sources using Lummer-Brodhum photometer.	(8)
		(ii)	Using the schematic diagram of a Scanning Electron Microscope explain the principle and working of it.	. ,
			OR	
	(b)	(i)	Derive an expression for the bandwidth of the fringe formed due to the interferences in an air wedge. How is it used in determining the thickness of a thin wire?	
		(ii)	What is sextant? What is the principle involved in the determination of angular variation using sextant.	` '

15. (a) Explain the basic principle used in lasers. Explain with a neat diagram the working of a semiconductor laser and discuss its merits and dements over other lasers. (4+9+3)

OR

(b) Derive an expression for Numerical aperture and angle of acceptance of a fiber interms of refractive indices of the core and cladding. What are different types of fiber optical sensors? Explain the working of pressure sensor. (7+2+7)