

Question Paper Code: 27308

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Software Engineering

ESE053 – DESIGN AND ANALYSIS

(Regulations 2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. State the differences between dynamic programming and divide-and-conquer techniques.
- 2. How the algorithm's time efficiency is measured?
- 3. What is the principle of optimality with an example?
- 4. Define multistage problem with an example.
- 5. What is Hamiltonian cycle?
- 6. What is a Biconnected component in Graph?
- 7. Differentiate backtracking and branch bound techniques.
- 8. Give the upper bound and lower bound of matrix multiplication algorithm.
- 9. Define halting problem.
- 10. What are the two types to show a decision problem is NP-Complete?

27308

$PART - B (5 \times 16 = 80 Marks)$

11.	(a)	(i)	Briefly discuss the sequence of steps typically required in designing and analyzing an Algorithm.	(8)
	•	(ii)	Explain briefly about Big Oh Notation, Omega Notation and Theta Notations. Give examples.	(8)
			OR	
	(b)		nguish between merge sort and quick sort and arrange the numbers in asing order using merge sort (18,29,68,32,43,37,87,24,47,50)	(16)
12.	(a)	Briefl	ly explain the procedure used for Strassen's Matrix multiplication.	(16)
			OR	
•	(b)	Write	down and explain the algorithm to solve all pairs shortest paths problem.	(16)
13.	(a)	(i)	Explain binary tree and its properties.	(8)
		(ii)	Write short notes on Connected Components and Spanning Trees.	(8)
			OR	
	(b)	(i)	Define a spanning tree T and a Minimum Spanning Tree (MST).	(8)
		(ii)	How will you find MST using Prim's algorithm and Kruskal's algorithm?	
			Illustrate with an example.	(8)
14.	(a)		the following instance of the knapsack problem by the branch-and-bound ithm, with $W = 16$.	
		Item	Weight Value	
		1 10	100	
		2 7	63	
		3 8 :	56	
		4 4	12 (16)	
			OR	
	(b)	State	and explain the n-Queen problem using backtracking.	(16)
15.	(a)	Brief	travelling salesman problem using NP hard approach.	(16)
	. "		OR	
	(b)	How	the Approximation Algorithm will differ from NP with an example?	(16)