			•						
		<u> </u>					·		
	j			ľ			'		•
								1	
]					! 1	1			
			!			ŀ		1	

Question Paper Code: 27383

5 Years M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Computer Technology

XCS 122 – ANALYTICAL GEOMETRY AND REAL AND COMPLEX ANALYSIS [Common to 5 Year M.Sc. Software Engineering / 5 Year M.Sc. Information Technology] (Regulations 2003)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- 1. Sketch the region corresponding to the integral $\int_{0}^{1} \int_{x}^{x^2} f(x, y) dy dx$.
- 2. Evaluate: $\int_{0}^{\pi/2} \int_{0}^{2} r \, dr \, d\theta.$
- 3. Give the physical meaning of Curl \overrightarrow{F} .
- 4. If \bar{r} is the position vector of the point (x, y, z) and $f = x^2 + y^2 + z^2$, prove that If \bar{r} grad $\phi = 2\phi$.
- 5. Find the equation of the plane which bisects at right angles the join of (1, 3, -2) and (3, 1, 6).

1

- 6. Find the equation of the sphere having the points (2, -3, 4) and (-1, 5, 7) as the ends of a diameter.
- 7. Prove that the function $f(z) = e^{-z}$ is analytic and also find their derivatives.
- 8. Prove that the function $u = e^x \cos y$ is harmonic.
- 9. State Cauchy's Residue theorem.
- 10. Find the poles of $f(z) = \frac{z^2}{(z^2 + 4)}$.

$\dot{PART} - B (5 \times 16 = 80 \text{ Marks})$

11. (a) (i) Evaluate $\iiint_{V} \frac{dz \, dy \, dx}{\sqrt{1 - x^2 - y^2 - z^2}}$, where v is the region of space bounded by the co-ordinate planes and the sphere $x^2 + y^2 + z^2 = 1$ and contained in the positive octant. (8)

(ii) Evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy(x+y) dx dy.$$
 (8)

OR

(b) (i) Evaluate
$$\int_{0}^{1} \int_{x}^{1-x} \int_{x}^{1-x-y} xyz \,dx \,dy \,dz.$$
 (8)

(ii) Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} xy \, dx \, dy$ and then evaluate it. (8)

12. (a) Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy)]$ where C is the boundary of the common area between $y = x^2$ and y = x. (16)

OR

- (b) Verify Gauss divergence theorem for $\overline{F} = x^2\hat{i} + y^2\hat{j} + z^2k$ taken over the cube bounded by the planes by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. (16)
- 13. (a) (i) Find the length and equations of the shortest distance between the pair of $\lim \frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}.$ (10)
 - (ii) Find the equation of the plane passing through the point (1, 2, -1) and perpendicular to the planes x + y 2z = 5 and 3x y + 4z = 12. (6)

OR

- (b) (i) Find the equation of the sphere passing through the four points (1, 2, 3), (0, -2, 4), (4, -4, 2) and (3, 1, 4). (10)
 - (ii) Show that the lines $\frac{x-4}{2} = \frac{y-5}{3} = \frac{z-6}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. (6)
- 14. (a) (i) Prove that an analytic function whose imaginary part is constant is itself a constant. (6)
 - (ii) Prove that $u = 2x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function. (10)

OR

- (b) (i) Prove that $f(z) = \sin x \cdot \cosh y + i \cos x \cdot \sinh y$ is differentiable at every point. (6)
 - (ii) Find the analytic function f(z) = u + iv given that $u v = e^x$ (cos $y \sin y$). (10)

3

15. (a) (i) Evaluate $\int_{C} \frac{z}{(z-1)(z-2)^2} dz$ where C is the circle $|z-2| = \frac{1}{2}$. (8)

(ii) Evaluate by contour integration
$$\int_{0}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$
. Where x is a real variable. (8)

OR

(b) (i) Find the Laurent expansion of the function
$$f(z) = \frac{7z-2}{(z+1)z(z-2)}$$
 in the region $1 < |z+1| < 3$. (8)

(ii) Evaluate by contour integration
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$$
. (8)

4

•

•

.

.

.