

Question Paper Code: 27378

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

First Semester

Computer Technology

XCS 112 – TRIGNOMETRY, ALGEBRA AND CALCULUS

(Common to 5 year M.Sc. Software Engineering/ 5 year M.Sc. Information Technology)
(Regulations 2003)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- 1. Show that $\left[\frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}\right]^n=\cos n\theta+1\sin n\theta.$
- 2. If $z = e^{ia}$, find the value of $\frac{z^2 1}{z^2 + 1}$.
- 3. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 4 \\ & & \\ 2 & 4 & 8 \end{pmatrix}$.
- 4. What are the applications of Cayley-Hamilton theorem?
- 5. Find $\frac{du}{dx}$ if $u = \sin(x^2 + y^2)$, where $x^2 + 4y^2 = 9$.
- 6. If u = 2xy, $v = x^2 y^2$, $x = r \cos \theta$ and $y = \sin \theta$, find $\frac{\partial(u, v)}{\partial(r, \theta)}$.

- 7. Evaluate $\int_{0}^{\pi/2} \sin^6 x \cdot \cos^4 x \, dx.$
- 8. Give the formula to find the surface area of the solid generated by the revolution of an arc of the curve x = f(y) from y = a to y = b about y-axis.
- 9. Find a differential equation of the form a $\frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ for which xe^x and e^x are the solutions.
- 10. Find the particular integral of the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2^x$.

$PART - B (5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Solve: $\frac{dx}{dt} + 2x 3y = 5t$, $\frac{dy}{dt} 3x + 2y = 2e^{2t}$.
 - (ii) Solve: $(x^2 D^2 xD 3) y = \sin(\log x)$.

OR

- (b) (i) Solve the equation $\cos\left(\frac{\pi}{6} x\right) = 0.88$. (8)
 - (ii) If $\cos(x + iy) = r(\cos \alpha + i \sin \alpha)$, prove that $y = \frac{1}{2} \log \frac{\sin (x \alpha)}{\sin (x + \alpha)}$. (8)
- 12. (a) (i) Test for consistency and hence solve:

$$x + y + z = 6$$
, $x + 2y - 2z + 3 = 0$, $2x + 3y + z = 11$.

(ii) Find the Eigen values and the Eigen vectors of $\begin{pmatrix}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{pmatrix}.$

OR

(b) Reduce the following quadratic form into canonical form:

$$3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3 + 2x_3x_1$$
.

'13. (a) (i) Find the extreme values of
$$\sqrt{1-x^2-y^2}$$
. (8)

(ii) If
$$u = 4x^2 + 6xy$$
, $v = 2y^2 + xy$, $x = r \cos \theta$, $y = r \sin \theta$, evaluate $\frac{\partial(u, v)}{\partial(r, \theta)}$. (8)

OR

(b) (i) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin u$. (8)

(ii) Expand $e^x \sin y$ in powers of x and y up to third degree terms. (8)

14. (a) (i) If
$$U_n = \int_0^{\pi/2} x^n \sin x \, dx$$
, $(n > 1)$, prove that U_n satisfies

$$U_n + n(n-1)U_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$$
. Hence find U_5 .

(ii) Find the area of the line segment cut-off from the parabola $x^2 = 8y$ by the line x - 2y + 8 = 0.

OR

- (b) (i) Find the volume of the solid generated by the revolution of the cardioid $r = a(1 + \cos \theta)$ about the x axis.
 - (ii) Find the surface area of the solid generated by revolving the cycloid $x = a(t \sin t)$, $y = a(1 \cos t)$ about the base.

3

15. (a) (i) Solve:
$$(D^2 + 2D - 1) y = (x + e^x)^2$$
, where $D = \frac{d}{dx}$. (8)

(ii) Solve:
$$(x^3D^3 + 3x^2D^2 + xD + 1) y = \sin(\log x)$$
. (8)

OR

(b) Solve the simultaneous differential equations:

$$Dx - (D-2) y = \cos 2t$$

$$(D-2)x + Dy \stackrel{\wedge}{=} \sin 2t$$
, where $D \equiv \frac{d}{dt}$. (16)