, 0 s LTI

Question Paper Code : 27403

ulel

S Years M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016
Fifth Semester
Computer Te-hnology
XCS 355/10677 SW 503 — DESIGN AN ANALYSIS OF ALGORITHMS

(Common to 5 Year M.Sc. Software Engineering and 5§ Year M.5c. — Information

Technology)
(Regulations 2003/2010)

Time : Three Hours Maximum : 100 Marks

Answer ALL questions.

PART - A (10 x 2 = 20 Marks)

. Using the step count method analyze the time complexity when two m x n matrices
are added.

2. Give the control abstraction for divide and conquer technique.

3. What do you mean by feasible solution and optimal solution ?

4. Define principle of optimality.
5. Differentiate Binary tree from Binary Search Tree.
6. What is the use of Spanning tree ? Give examples.

7. Write any two applications where branch and bound technique can be apphed.
8. What is meant by Graph colouring ?
9. What is non-deterministic algorithm ?

10. What is the need for approximation algorithm 7

14-06 1 27403

11.

12.

13.

14,

15.

(a)

(b)

(a)

(b)

(a)

(b)

(b)

PART — B (8§ x 16 = 80 Marks)

Explain now the minimum and maximum number is identified in a set of n

wumbers by using divide and conquer method. (16)
OR
Describe how quicksort algorithm sorts the following sequences of keys. (16)

50, 10, 25, 30, 15, 70, 35, 55

Solve the knapsack problem using greedy technique. (16)
OR
What 1s multistage graph ? Explain with an example. Write the procedure for

finding the minimum cost path using backward approach. (16)

Explain the Breadth First Search algorithm. Compare it with Depth First Search. (16)
OR
(1) Write a note on spanning trees. (10)

(1) What do you mean by biconnected graph ? How is it used in DFS of a

graph ? (6)
(1) Detfine Hamiltonian cycle. (4)
(11) Discuss the algorithm for graph colouring. (12)
OR
Explain the backtracking algorithm for solving the 8 queens problem. (16)
What 1s NP hard problem ? Discuss in detail NP hard scheduling problem. (16)
OR
(1) Write a brief note on NP-Hard Code generation problem. (8)
(11) Explain the need for common subexpressions in code generation. (8)

2 27403

