

Question Paper Code: 27400

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Computer Technology

XCS 352 / 10677SW 505 – THEORY OF COMPUTATION

(Common to M.Sc. Software Engineering and M.Sc. Information Technology)

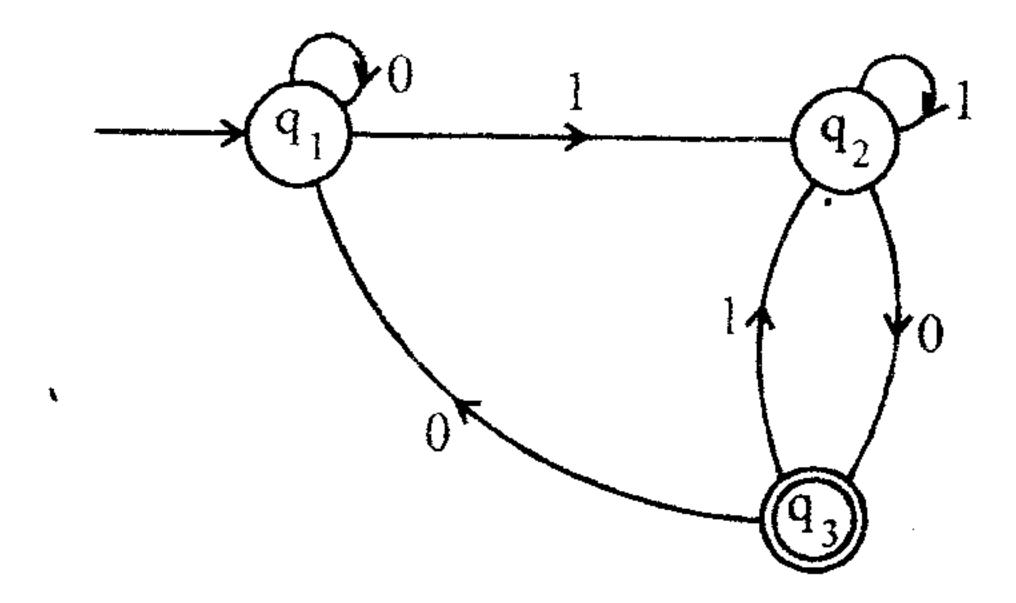
(Regulations 2003/2010)

Time: Three Hours

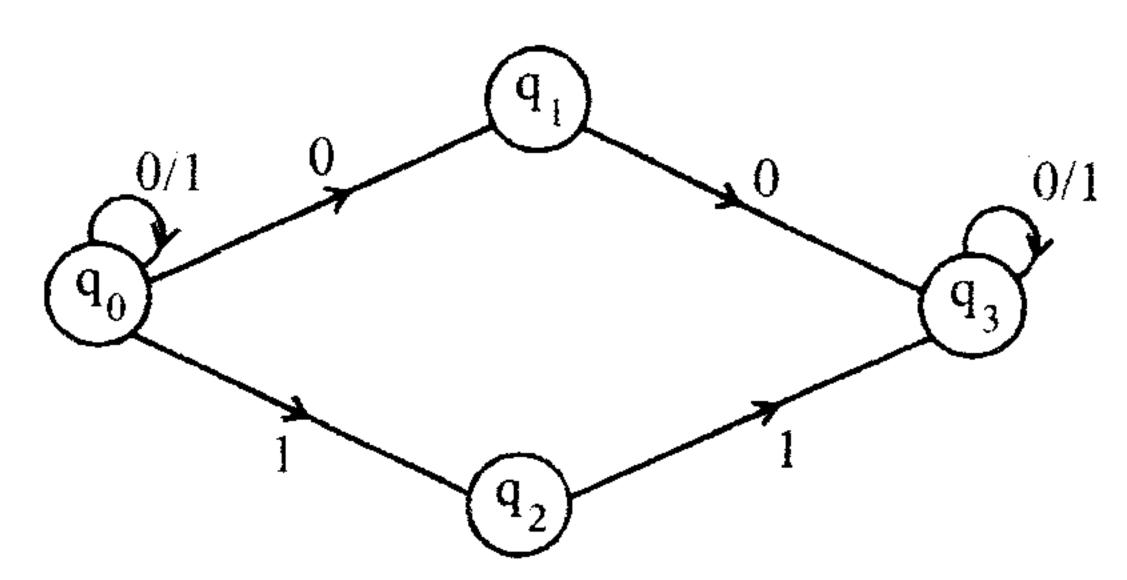
Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- 1. Define distinguishable and non-distinguishable states.
- 2. Is the regular language closed under union? Prove it.
- 3. What is a parse tree? Construct a parse tree for the string w = abb grammar $S \rightarrow AB A \rightarrow Aa \mid aB \rightarrow bB \mid b$.
- 4. Define Pushdown Automata.
- 5. Give the notations and initial configuration of a Turing machine.
- 6. Prove that if a language is recursive, then it is recursively enumerable.
- 7. What do you mean by an undecidable problem?
- 8. Is it true, that complement of a recursive language is recursive? Justify your answer.
- 9. State the Cook's theorem on NP-completener.
- 10. Define diagonal language.


27400

$PART - B (5 \times 16 = 80 Marks)$


- 11. (a) (i) Construct a DFA to accept a set of all binary strings such that the 3rd symbol from right end is 1. (8)
 - . (ii) Prove that if L is accepted by an NFA with ∈-transitions, then L is also accepted by an NFA without ∈-transitions. (8)

OR

(b) (i) Construct a regular expression to the transition diagram. (8)

(ii) Construct an equivalent DFA for the following NFA given below. (8)

- 12. (a) (i) Obtain a CFG to generate a language of all non-palindrome over the alphabet $\Sigma = \{a, b\}$. Trace for a string of acceptance and non-acceptance using Leftmost derivation.
 - (8)
 (ii) Is S → aSbS | bSaS | ∈-ambiguous? Justify and explain ambiguity. (8)

OR

- (b) (i) Construct a PDA to accept $L = \{ww^R/w \in (0+1)^*\}$. (8)
 - (ii) For the grammar $S \rightarrow aABC$

 $A \rightarrow aB \mid a$

 $B \rightarrow bA \mid b$

 $C \rightarrow a$

Obtain the corresponding PDA. Trace for the string w = aabaa. (8)

13.	(a)	Explain the various models of Turing machine with neat sketches wherever possible. What are the powers of each model? (16))
OR			
	(b)	(i) Design a Turing machine to accept the language L(a(a + b)*). (8)
	•	(ii) Design a TM machine that copies strings of a's. Explaint the steps involved and show the sequences of moves for the input string aaa. (8)
14.	(a)	What are undecidable and unsolvable problems? Discuss on unsolvable problems about grammars. (16)
		\mathbf{OR} .	
	(b)	(i) Prove that halting problem is undecidable. (8	(
		(ii) Explain the programmable Turing machine. How does enumeration help in the universal Turing machine? (8)	;)
15.	(a)	Explain PCP and MPCP problem and decide on their class. OR (16)	5)
	(b)	Explain the concept of NP-completeness and state one example problem and prove that it is NP – complete.	5)

. 27400