

Question Paper Code: 52682

B.E/B.Tech. DEGREE EXAMINATION, APRIL 2016

Eighth Semester

Mechanical Engineering

ME2036/ME802/10122 MEE44 – PRODUCTION PLANNING AND CONTROL

(Common to Production Engineering/Mechanical and Automation Engineering)

(Regulations 2008/2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. List the various types of production. Give examples.
- 2. What is meant by standardization and simplification?
- 3. Differentiate Cycle graph and Chrono cycle graph.
- 4. What are the steps involved in Method Study?

5. A job is performed on the milling machine. The following details are given below:

Standard time for the job : 6 minutes

No. of jobs to be produced: 70,000 units

Machine Capacity : 2000 hours/month

Machine Utilization : 90%

Compute the number of machines required.

- 6. List the problems associated with lack of production planning.
- 7. What is Master Scheduling?
- 8. ABC bakery produces short run of cakes that are shipped to grocery stores. The owner of the bakery wish to reduce inventory by changing to a Kanban system, based on the given data determine the number of kanbans needed.

Demand during lead time: 1000 cakes

Safety stock : 250 cakes

Container size : 250 cakes

- 9. What are the types of inventories? Give examples for each type.
- 10. Write the advantages of ERP system.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) Discuss in detail about the various aspects involved in product development and design with appropriate examples.

(b) What are the assumptions made in Break-Even Analysis? An analysis of a company reveals the following information:

Cost Element	Variable Cost	Fixed Cost		
Direct Material	32.8			
Direct Labour	28.4			
Factory Overheads	12.6	1,89,900		
Distribution Overheads	4.1	58,400		
General Administrative Overheads	1.1	66,700		
Budgeted sales	18,50,000			

Determine Break-Even sales volume. The profit at the budgeted sales volume. The profit if the actual sales drop by 10%, the profit if the actual sales increase by 5% for budgeted sales.

- 12. (a) (i) Explain in detail about "Effective Therbligs" with suitable examples. (8)
 - (ii) The elemental times for 4 cycles of an operation using a stop watch are presented below:

Elements -	Cycle time in minutes						
	I	II	III	IV			
1	1.5	1.5	1.3	1.4			
2	2.6	2.7	2.4	2.6			
3	3.3	3.2	3.4	3.4			
4	1.2	1.2	1.1	1.2			
5	0.51	0.51	0.52	0.49			

Calculate the standard time for the operation if

- (1) Elements 2 and 4 are machine elements.
- (2) For other elements, the operator is rated at 110%.
- (3) Total allowances are 15% of the normal time.

(8)

		an operation. The observations of the stud	dy conducted are give	n
		below:		
•		(1) Total number of observations	: 160	
		(2) Manual (hand controlled) work	: 14	
		(3) Machine controlled work	: 106	
		(4) Machine idle time	: 40	
		(5) Average performance rating	: 80%	
		(6) Number of parts produced	: 36	•
		(7) Allowance for personal needs and fatigue	: 10%	
		(8) Study conducted for	: 3 days	
		(9) Available working hours/day	: 8 hrs	
		Calculate the standard time per piece.		(10)
	(ii)	How the standard time for a simple manual job	is made up? Explain th	e
		various allowances used to build the standard tim	ie.	(6)
13. (a)	(i)	Define Process Planning and explain the vario	ous factors considered fo	r
		selecting a process and equipment.		(8)
	(ii)	Define Value Analysis and present a FAST Diagr	ram for a PEN.	(8)
		OR		

A work sampling study was conducted to establish the standard time for

- (b) Three components are to be manufactured on three machines Center lathe, Milling machine and Cylindrical grinding machine.
 - (i) Calculate the number of machines required of each kind to produce the components if the plant works for 48 hours per week.
 - (ii) Calculate the number of machines required assuming the machine efficiency of 75%
 - (iii) How do you reduce the number of machines?

The following information is given:

 $\pi^{\prime}(P_{-1})$

	Component A		Compo	nent B	Component C		
Machines	Set up time	Operation	Set up time	Operation	Set up	Operation	
	(min)	time (min)	(min)	time (min)	time (min)	time (min)	
Center lathe	30	2	55	2.5	40	1.5	
Milling machine	45	8	30 4				
Cylindrical grinding			60	8	60	10	
Other Details							
Lot Size	35	50		400		600	
Quantity Demanded / month	1750		4000		3000		

14. (a) A small scale unit manufactures a product and it is expected to supply 80 units in week 1, 120 in week 4, 120 in week 6, 100 in week 8. Each product is made of 2 housings, a shaft assembly and one wheel. For these components order quantities, lead times and inventories on hand at the beginning of period 1 are given below:

Part	Order Quantity	Lead Time	Inventory on Hand		
Housings	600	2 weeks	200		
Shaft Assembly	400	3 weeks	440		
Wheel	800	1 week	100		

Apart from the above requirement, another 180 shaft assembly is required for another customer. 600 units of housing are already scheduled to be received at the beginning of weak 2. Complete the Material Requirement plan for housing, shaft and wheel. Show that quantities of orders must be released and when they must be released in order to satisfy the MPS.

OR

(b) (i) Four items A, B, C and D are to be processed successively in batches on the same facility. The demand and production rates, set up costs and holding costs for each product are given below:

Item	Demand per year	Production rate per day	Holding cost / unit / annum	Set-up cost per batch		
A	10000	250	0.05	100		
В	5000	100	0.05	50		
C	8000	200	0.10	80		
D	12000	300	0.05	60		

Determine the number of cycles per annum and the quantity in batches and the production times for each item in a cycle. Assume 250 working days in a year.

(ii) Discuss in detail the various steps involved in Line of Balance Technique. (6)

15. (a) (i) Store of a repair shop has 10 items whose details are shown in the following table. Apply ABC analysis to the stores and identify A Class, B Class and C Class items.

Component	C_{01}	C ₀₂	C ₀₃	C ₀₄	C ₀₅	C ₀₆	C ₀₇	C ₀₈	C ₀₉	C ₁₀
Code										
Price / Unit (₹)	500	4000	2000	3000	4000	500	500	1000	1500	500
Annual Demand (units / year)	600	600	600	600	600	1200	600	1200	600	600

(ii) Discuss in detail about MRP-II.

(8)

(8)

(8)

OR

- (b) (i) A manufacturer has to supply his customers 3600 units of his product per year. Shortages are not permitted. Inventory carrying costs amounts ₹ 1.20 per unit per annum. The set-up cost per run is ₹ 80. Find the Economic Order Quantity, Optimum number of orders per annum, Average annual inventory cost and Optimum period of supply per optimum order.
 - (ii) Elaborate the various elements of JIT systems with suitable examples. (8)