		\	6	NN
1	\	6/,		N

-		 			
Reg No					
Reg. No.					
	l L		 		

Question Paper Code: 51761

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Information Technology

IT 2302/IT 52 - INFORMATION THEORY AND CODING

(Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Calculate the amount of information if probability of occurrence = 5/8.
- 2. List the properties of mutual information.
- 3. What is perceptual coding?
- 4. What is Dolby AC-3?
- 5. State the main difference between MPEG video compression algorithms and H.261.
- 6. What is TIFF?
- 7. How is a burst error of length k can be represented?
- 8. Suppose H is a parity check matrix of an (n,k) code, then for any vector $v \in GF(q)^n$, give the syndrome of v.
- 9. What are the difference between block and convolutional codes?
- 10. What is interleaver in a turbo code?

$PART - B (5 \times 16 = 80 Marks)$

11. (a) A discrete memory less source has 5 symbols x_1 , x_2 , x_3 , x_4 and x_5 with probabilities $p(x_1) = 0.4$, $p(x_2) = 0.19$, $p(x_3) = 0.16$, $p(x_4) = 0.15$ and $p(x_5) = 0.1$. Construct a Shannon-FANO code for the source and calculate entropy, efficiency and code variance. (16)

OR

- (b) (i) Explain Channel capacity and derive the channel capacity for binary symmetric channel. (8)
 - (ii) Discuss about Mutual information and its properties. (8)
- 12. (a) Write a detailed note on:
 - (i) Arithmetic code
 - (ii) LZW algorithm.

OR

- (b) Explain Linear Predictive Coding in detail.
- 13. (a) Explain in detail about the various types of MPEG standards. (16)

OR

- (b) Explain in detail about the standard H.261. (16)
- 14. (a) (i) Consider a (7, 4) cyclic code whose generator polynomial is $g(x) = 1 + x^2 + x^3.$ (12)
 - (1) Encode the message (1001) using encoder and algorithm.
 - (2) Decode the received word if error has occurred at middle bit using both syndrome calculator circuit and algorithm.
 - (ii) Let $c_1 = \{1101001\}$ and $c_2 = \{1100100\}$. Calculate $w(c_1)$, $w(c_2)$ and $w(c_1 + c_2)$ for two arbitrary binary vectors c_1 and c_2 of same length. $w(c_1 + c_2) = w(c_1) + w(c_2) ?$

OR

(b) (i) Consider a (7, 4) linear block code with parity check matrix given by, (12)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- (1) Generate the codebook.
- (2) Show that this code is a Hamming code.
- (3) Illustrate the relation between the minimum distance and structure of the parity check matrix by considering the codeword 0101100.
- Show that the minimum hamming distance d_{min} between two code words of a binary linear block code is equal to the hamming weight of the codeword with the smallest number of 1s. excluding all-0 codeword for the codebook $C = \{0000, 1010, 0101, 11111\}$. (4)
- 15. (a) (i) The convolution encoder for a rate $r = \frac{1}{2}$, constraint length K = 4, determine the output codeword for the message (1011 1). (10)

(ii) Draw the code tree for the above convolutional encoder.

(6)

OR

(b) Explain Viterbi algorithm in detail.

(16)