Reg. No.			- -				
Reg. No.							

Question Paper Code: 51459

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Electrical and Electronics Engineering

EC 2314/10144 EC 502/EC 2361/10133 EE 502 – DIGITAL SIGNAL PROCESSING

(Common to Electronics and Communication Engineering and Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Define unit step function.
- 2. Compare energy and power signal.
- 3. State the initial value and final value theorem of Z transform.
- 4. Find the convolution of the following two sequences $x(n) = \{2, -1, 3\}$ and $h(n) = \{1, 2, 2.3\}$
- 5. Draw the basic butterfly diagram of radix 2 DIT and DIP FFT.
- 6. State Parsevals theorem of discrete Fourier transform.
- 7. Define group delay and phase delay of FIR filter.
- 8. What are the advantages of bilinear transformation?
- 9. List out different stages in pipelining.
- 10. What are the different buses of TMS320 C5X?

51459

$PART - B (5 \times 16 = 80 \text{ marks})$

11.	(a)	Explain the classification of discrete time system with suitable example.	(16)
		. OR	
	(b)	State and explain sampling theorem with necessary diagram.	(16)
12.	(a)	(i) Find the impulse response and frequency response of the following System:	
		y(n)= 1/2 y(n-1) + x(n) + 1/3 x(n-1)	(8)
		(ii) Determine the circular convolution of the following sequences:	
		$x(n) = \{1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, \}$	
		$h(n) = \{0, 1, 2, 3\}$	(8)
		OR	
	(b)	Using long division method, determine the inverse Z transform of $X(Z) = 1/1 - (3/2) Z^{-1} + (1/2) Z^{-2}$	
	•	When ROC: $ Z > 1$ and ROC: $ Z < \frac{1}{2}$	(16)
13.	(a)	Compute 8 point DFT of the sequences using DIT-FFT algorithm	
		$x(n) = \{0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1\}$	(16)
		OR	
	(b)	State and prove all the properties of DFT.	16)
		. 2	40

Design a low pass filter of order 7 and cut off frequency of 1 rad/sec. Use rectangular window. Also plot the magnitude response of the filter. **(16)** OR Design a digital butterworth filter satisfying the following specification: $0.707 \le |H(e^{jw})| \le 1; \quad 0 \le w \le \pi n/2$ $|H(e^{jw})| \le 0.2$; $3\pi/4 \le w \le \pi$. Using bilinear transformation technique with T = 1 sec. **(16)** Write short notes on: (a) Multiplier and accumulator unit (i) **(8)** Arithmetic Logic Unit **(ii) (8)** OR Explain the different addressing modes of TMS320C5X with suitable examples. (16) (b)