

Question Paper Code: 51505

B.E/B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electrical and Electronics Engineering

EE 2255/EE 46/EC 1261 A/080280029/10133 EE 406 A – DIGITAL LOGIC CIRCUITS (Regulations 2008/2010)

(Common to PTEE 2255/10133 EE 406 – Digital Logic Circuits for B.E. (Part-Time) Third Semester – EEE – Regulations 2009/2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Simplify the expression using Boolean Algebra ((AB' + ABC)' + A(B + AB'))'.
- 2. Realize the OR functions using 2.1 MUX.
- 3. Draw the logic diagram of master slave D- Flip Flop using NAND gates.
- 4. Reduce the number of states in the following table and tabulate the reduced state table.

	Next State		Output	
Present State	$\mathbf{X} = 0$	X = 1	X = 0	X = 1
a	f	b	0	0
ъ	đ	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

5. Investigate the following transition table and determine any two race conditions. Explain whether they are critical or non critical.

	$egin{array}{cccccccccccccccccccccccccccccccccccc$					
νι ν ₂ 00	10	(00)	1 1	10		
10	(01)	00	10	10		
1	Ü1	ÖΟ				
10	1)	00	(10)	(10)		

6. An asynchronous sequential circuit is described by the following excitation and output functions, obtain a 2-state flow table.

$$Y = x_1 x_2' + (x_1 + x_2') y$$

 $z = y$

- 7. What is mask programmable and field programmable logic array?
- 8. Why CMOS is preferred over other digital logic families?
- 9. Write a test bench for Half adder using VHDL.
- 10. Consider a = 1010 and b = 1100 and Y = a + b (a.b). Compute the value of Y in VHDL.

$$PART - B$$
 (5 × 16 = 80 Marks)

11. (A) (i) Obtain the Reduced Boolean Expression for the following using Quine McKlusky method and find the essential and non-essential prime implicants. (8)

$$F(A, B, C, D) = \Sigma (0, 1, 4, 5, 9, 10, 12, 14, 15) + \Sigma d (2, 8, 13)$$

(ii) Define propagation delay. Construct a four bit adder circuit which first determines the carry for all the stages and produces the sum. Write the Boolean expressions for all the carry generated.

(8)

OR

- (B) (i) Construct BCD to Seven Segment Decoder using Karnaugh Map and compare the Complexity of the circuit when it is Implemented with 4X16 Decoder.
 - (8)
 - (ii) Using a 4-to-16 line decoder constructed from NAND gates and having an enable input E', design an excess -3 to 8421 code converter. (8)

12.	(A)	(i)	A sequential circuit has two JK flip-flops, A and B; two inputs, x and y;
			and one output z. The flip-flop input functions and the circuit output
			functions are as follows:

(8)

$$J_A = Bx + B'y'$$
 $K_A = B'xy'$

$$J_B = A'x K_B = A + xy'$$

$$z = Axy + Bx'y'$$

- (a) Draw the logic diagram of the circuit.
- Tabulate the state table.
- Derive the next state equation for A and B.
- Design a modulo-5 synchronous counter using JK flip-flop. (ii)

(8)

OR

(B) Design a counter with T-Flip Flops that goes through the following binary repeated sequence: 0, 1, 3, 7, 6, 4. show that when 2 and 5 are taken to be don't care conditions, the counter may not operate property.

(8)

A sequential, circuit, has two JK flip flops A and B and one input x. The (11)circuit is described by the following flip-flop input equation. **(8)**

$$J_A = X$$
 $K_A = B'$

$$J_B = X$$
 $K_B = A$

- Derive the state equations A(t+l) and B(t+l) by substituting the input (a) equations for the J and, K variable.
- Draw the state diagram of the circuit. (b)
- Construct two input TTL NAND gate with three states output and explain 13. (A) its operation. Also discuss its merits and demerits.

 - Design a combinational circuit using a ROM. The circuit accepts a 3-bit (11)number and generates an output binary number equal to the complement of the input number.

OR

A combinational circuit is defined by the functions: (B)

(8)

(8)

(8)

$$F_1(A,B,C) = \Sigma (3, 5, 6, 7)$$

$$F_2(A,B,C) = \Sigma(0, 2, 4, 7)$$

Implement the circuit with a PLA having three inputs, four product terms, and two outputs.

Derive the PLA programming table for the combinational circuit that (11)squares a 3-bit number. Minimize the number of Product terms. **(8)** 14. (A) (i) The Boolean functions for the inputs of an SR latch are as follows, obtain the circuit diagram using a minimum number of NAND gates. (8)

$$S = x_1'x_2'x_3 + x_1x_2x_3$$

$$R = x_1 x_2' + x_2 x_3'$$

(ii) Analyze the T flip-flop shown in the circuit below. Formulate the transition table and show that the circuit is unstable when both T and CP are equal to 1.

- (B) (i) Derive a primitive flow table for a circuit with two inputs, x_1 and x_2 , and two outputs, z_1 and z_2 , that satisfy the following conditions: (8)
 - (a) When $x_1x_2 = 00$, the output is $z_1z_2 = 00$.
 - (b) When $x_1 = 1$ and x_2 changes from 0 to 1, the output is $z_1 z_2 = 01$.
 - (c) when $x_2 = 1$ and x_1 changes from 0 to 1, the output is $z_1 z_2 = 10$
 - (d) Otherwise, the output does not change.
 - (ii) Explain the difference between asynchronous and synchronous sequential circuits and define the following:

 (8)
 - (a) Fundamental Mode of operation of Circuits.
 - (b) Transition Table, Excitation Table, Primitive Flow Table.
 - (c) Mealy and Moore Machines.
- 15. (A) (i) Write a VHDL Module that describes a 16-bit serial in serial out shift register with input SI (serial Input), EN (Enable) and CK (Clock shifts on rising edge) and a serial output (SO). (10)
 - (ii) Write a data flow VHDL for Full subtractor using logic equations. (6)

OR

- (B) (i) Write the VHDL program in mixed style to design a synchronous counter to count even number. Write the test bench program to test the circuit operation. (10)
 - (ii) List out and explain different operator used in VHDL programming. (6)