	 			,	 	, , , , , , , , , , , , , , , , , , , 		
Reg. No.								
					 		•	

Question Paper Code: 51778

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Mechanical Engineering

MA 2266/MA 42/MA 1254/080120014/10177 SN 401 – STATISTICS AND NUMERICAL METHODS

(Common to Automobile Engineering and Production Engineering)

(Regulations 2008/2010)

Time: Three Hours

Maximum: 100 Marks

Statistical tables may be permitted.

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. What are Type I and Type II risk?
- 2. Present the test statistics for small samples concerning difference between two means.
- 3. What is a 2^2 factorial design?
- 4. Compare one-way classification with two-way classification.
- 5. Write the iterative formula and the order of convergence of Newton-Raphson method.
- 6. Compare Gauss-Elimination with Gauss-Seidel method.
- 7. Create the table for the following data using Newton's divided difference formula:

x: 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028

- 8. Compare trapezoidal rule with Simpson's $\frac{1}{3}$ rule.
- 9. Given the two methods: Taylor's series and R.K. method which is better? Why?
- 10. Express $(\Delta^2 3\Delta + 2)$ interms of the operator E.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) Test if the means are significantly different for the following data: (8)
$$X_1: 5 \quad 6 \quad 8 \quad 1 \quad 12 \quad 4 \quad 3 \quad 9 \quad 6 \quad 10$$

(ii) Random samples of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed 19 and 5 defective bolts respectively.

Test the hypothesis at 5% level of significance that the two machines are showing different qualities of performance.

(8)

OR

(ii) The following data represents the no. of books borrowed from a library during the various days of the week.

Days of the week:	Mon	Tue	Wed	Thu	Fri	Sat	Sun
No. of books:	14	16	8	12	11	9	14

51778

12. (a) Carryout an ANOVA for the following:

Consignment

Observer	1	2	3	4	5	6
• 1	9	10	9	10	11	11
2	12	11	9	11	10	10
3	11	10	10	12	11	10
4	12	13	11	14	12	10

OR

(b) Perform Analysis of variance for the 2² experiment and draw your conclusions for the following data:

Block	Yields (Potato)							
T	(1)	a	b	ab				
I	23	25	_	38				
TT	b	(1)	a	ab				
II	40	26	36	38				
1 f T	(1)	a	ba	b				
Ш	29	20	36 ba 30	20				
IV	ab	a	b	(1)				
1 4	34	31	b 22 a 36 ba 30 b	28				

13. (a) (i) Solve by Gauss-Seidel, the equations

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Standing with $(0, 0, 0)^T$

(ii) Using power method, find the longest Eigen value and its corresponding Eigen vector from (8)

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

OR

(8)

(b) (i) Using Newton-Raphson's method, find the root of
$$x^4 - x - 10 = 0$$
, nearing to 2, correct to 3 decimal places. (8)

(ii) Find the inverse of
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{pmatrix}$$
 using Gauss-Jordan method. (8)

14. (a) (i) Using Lagrange's method, find the polynomial
$$f(x)$$
 given that $f(0) = 2$, $f(1) = 3$, $f(2) = 12 & f(3) = 35$. Hence find $f(5)$. (8)

(ii) Find
$$\frac{d}{dx}$$
 for $x = 1.05$ from the following data:

OR

(b) (i) Using Simpson's
$$\frac{1}{3}$$
 rule, evaluate $\int_{0}^{20} V dt$ for the following data: (8)

(ii) Find y when
$$x = 410$$
 for the following:

15. (a) (i) Using R.K. method 4th order, find y(0.2) with h = 0.1 for
$$\frac{dy}{dx} = \sqrt{x + y}$$
, y(0) = 1. (8)

(ii) Apply Euler's modified method to solve
$$\frac{dy}{dx} = x + 3y$$
, $y(0) = 1$, to find y when $x = 1$.

OR

(b) Given
$$\frac{dy}{dx} = \frac{1}{2}(1 + x^2)y^2$$
 and $y(0) = 1$. Find the values of y for $x = 0.1$, 0.2 and 0.3 using Taylor's series and hence find $y(0.4)$ by Milne's Predictor-Corrector method. (16)

(8)