				 			والمساول المساور	— —	 	
							,			
								1		
_			ľ							
			1						•	
	•			1		•				
1			1			1				
•										
	1									
Reg. No.	T T							1	1	
		•	1							
			•							
		E .								
			1					ľ		
									1	1.
			1							•
.		4	9							I I
			1		1					
		1								
9	•									
.	. .								 	

Question Paper Code: 51447

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electronics and Communication Engineering

EC 2251/EC 41/10144 EC 402/080290019 - ELECTRONIC CIRCUITS - II

(Regulations 2008/2010)

(Common to PTEC 2251 Electronic Circuits – II for B.E. (Part-Time) Third Semester ECE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Why gain bandwidth product remains constant with the introduction of negative feedback?
- 2. A voltage series feedback amplifier has a voltage gain with feedback as 83.33 and feedback ratio as 0.01. Calculate the voltage gain of amplifier with feedback.
- 3. What is the major disadvantage of a Twin-T oscillator?
- 4. In a Hartley oscillator, if $L_1=0.2$ mH, $L_2=0.3$ mH and C=0.003 μF . Calculate the frequency of its oscillations.
- 5. What is unloaded Q?
- 6. What are the different coil losses?
- 7. Why is neutralization required in tuned amplifiers?
- 8. Define the threshold points in a Schmitt trigger circuit.
- 9. Define slope error and displacement error.
- 10. Mention two applications of blocking oscillators.

51447

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) With a neat diagram, derive the expression of R_{if} , R_{of} , A_v and A_{vf} for the following. (8 + 8)
 - (i) Voltage series feedback amplifier
 - (ii) Current shunt feedback amplifier.

OR

- (b) (i) Discuss Nyquist criterion for stability of feedback amplifiers, with the help of Nyquist plot and bode plot. (8)
 - (ii) An amplifier has a voltage gain of 4000. Its input impedance is 2 K and output impedance is 60 K. Calculate the voltage gain, input and output impedance of the circuit is 5% of the feedback is fed in the form of series negative voltage feedback.

 (8)
- 12. (a) (i) Draw the circuit of Wein bridge oscillator using BJT. Show that the gain of the amplifier must be atleast three for the oscillation to occur. (10)
 - (ii) In a certain oscillator circuit, the gain of the amplifier is $\frac{-16 \times 10^6}{j\omega}$ and the feedback factor of the feedback network is $\frac{10^8}{[2 \times 10^8 + j\omega]^2}$. Verify the Barkhausen criterion for the sustained oscillations. Also find the frequency at which the circuit will oscillate.

OR

- (b) (i) Explain the working of a Colpitts oscillator with a neat circuit diagram and derive the frequency of oscillation. (8)
 - (ii) In a Colpitt's oscillator, the value of the inductor and capacitors in the tank circuit are L = 40 mH, $C_1 = 100 \text{ pF}$ and $C_2 = 500 \text{ pF}$. (8)
 - (1) Find the frequency of oscillation.
 - (2) If the output voltage is 10 V, find the feedback voltage at the input side of the amplifier.
 - (3) Find the minimum gain, if the frequency is changed by charging 'L' alone.
 - (4) Find the value of C_1 for a gain of 10 if C_2 is kept constant as 500 pF. Also find the resulting new frequency.

13.	(a)	(i)	Draw the circuit diagram of a single tuned amplifier and explain the circuit operation. Also derive the expression for its frequency of oscillation.	(10)
		(ii)	Discuss the effect of cascading tuned amplifiers.	(6)
			OR	
	(b)	· (i)	Explain the working of stagger tuned amplifiers with appropriate derivations.	(10)
		(ii)	Explain the instability of tuned amplifiers and explain any one technique for stabilization.	(6)
14.	(a)		n a circuit diagram and waveforms explain the operation of a transistor based able multivibrator.	(16)
			OR	
	(b)	(i)	Discuss on the response of a RC low-pass circuit for (1) square input and (2) ramp input.	(8)
		(ii)	Discuss on the effect of RC time constant and condition for the circuit to operate as integrator.	(8)
i 5.	(a)		with the circuit diagram and describe the working of a transistor monostable king oscillator with base timing. Derive the expression for the pulse h.	
			OR	
	(b)	(i)	With a neat circuit diagram and waveforms, explain the operation of a UJT relaxation oscillator. Derive the expressions for the sweep time and frequency of oscillation of the circuit.	(8)
		(ii)	Explain the operation of a simple current time base generator circuit.	(8)

•

-