| 1 | | <u></u> | | <u></u> | <u> </u> | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · | | |----------|-------------|---------|--|---------|----------|---|---------------------------------------|-------------------------------------|--| | | | | | | | 1 | | | | | Reg. No. | Question Paper Code: 51381 ### B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016 #### Fourth Semester #### Computer Science and Engineering # CS 2253/CS 43/CS 1252 A/080250011/10144 CS 404 – COMPUTER ORGANIZATION AND ARCHITECTURE (Common to Information Technology) (Regulations 2008/2010) (Also Common to PTCS 2253 – Computer Organization and Architecture for B.E. (Part-Time) Third Semester – CSE – Regulations 2009) Time: Three Hours Maximum: 100 Marks ## Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$ - 1. State the basic performance equation. - 2. What do you mean by an interrupt? - 3. Compare hardwired and micro programmed controls. - 4. What is nano programming? - 5. What is a hazard? - 6. Define exception. - 7. An address space is specified by 24 bits and the corresponding memory space by 16 bits: How many words are there in the virtual memory and in the main memory? 51381 1 | · | | nterrupt masks provided in any processor? | | |-------------|---------------------|---|--| | Wha | . • .• | | | | | at is th | ne necessity of an interface? | | | | | PART – B (5 × 16 = 80 Marks) | | | (a) | (i) | Explain the different types of instructions with examples. Compare their relative merits and demerits. | . (8) | | | (ii) | Explain with an example how to multiply two unsigned binary numbers. OR | (8) | | (b) | Exp | ain the design of ALU in detail. | (16) | | (a) | | unconditional and conditional branch instruction. | (12)
(4) | | (h) | Dica | OR | (14) | | (D) | Disc | suss about the nardwired control in detail. | (16) | | (a) | (i)
(ii) | Explain the performance of pipelining. Explain in detail about the limitations of ILP. OR | (8)
(8) | | (b) | Expl | | (16) | | (a) | (i)
(ii) | memory. Explain the various mapping techniques associated with cache memories. | (6)
(10) | | (b) | (i)
(ii) | Explain a method of translating virtual address to physical address. What for replacement algorithms are used? Explain the important ones. | (6)
(10) | | (a) | | s of handling interrupts. | (16) | | 4 \ | | OR | | | (D) | (1) | Write and explain the working of Peripheral Components Interconnect (PCI) Bus. | (8) | | | (ii) | Discuss DMA controller with block diagram. | (8) | | | (b) (a) (b) (b) (b) | (ii) (b) Expl (a) (i) (ii) (b) Disc (a) (i) (ii) (b) (ii) (ii) (b) (ii) (iii) | (a) (i) Explain the different types of instructions with examples. Compare their relative merits and demerits. (ii) Explain with an example how to multiply two unsigned binary numbers. OR (b) Explain the design of ALU in detail. (a) (i) Explain in detail the control sequence for an unbranch instruction, unconditional and conditional branch instruction. (ii) Give the control sequence for the instruction Add R4, R5, R6. OR (b) Discuss about the hardwired control in detail. (a) (i) Explain the performance of pipelining. (ii) Explain in detail about the limitations of ILP. OR (b) Explain in detail the various pipeline hazards and methods to overcome them. (a) (i) Explain the need for memory hierarchy technology, with a four-level memory. (ii) Explain the various mapping techniques associated with cache memories. OR (b) (i) Explain a method of translating virtual address to physical address. (ii) What for replacement algorithms are used? Explain the important ones. (a) What is an interrupt? Explain the different types of interrupts and the different ways of handling interrupts. OR (b) (i) Write and explain the working of Peripheral Components Interconnect (PCI) Bus. | 8.