Question Paper Code: 52093

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

PH 2161/PH 23/080040002 - ENGINEERING PHYSICS - II

(Common to all branches)

(Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Write down the expression for Fermi-Distribution function.
- 2. Give the expression for the carrier concentration in metals.
- 3. Compared with Gemanium, Silicon is widely used to manufacture the elemental device. Why?
- 4. Draw the graph for variation of Fermi level with temperature in p-type semiconductor.
- 5. What is the origin of magnetic moment?
- 6. What are cryotron switches?
- 7. Calculate the polarization produced in a dielectric medium of dielectric constant 6 when it is subjected to an electric field of 100 V/m. (Given $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$)
- 8. Define dielectric breakdown and dielectric strength.
- 9. What is shape memory effect?
- 10. What are the different crystalline forms of carbon?

52093

$PART - B (5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) State the postulates of classical free electron theory and derive an expression for thermal conductivity of metals. (12)
 - (ii) A copper wire whose radius is 0.08 cm carries a steady current of 10 A. Calculate the current density of the wire and drift velocity of the free electron. (n = 8.46×10^{28} /m³). (4)

OR

- (b) (i) Derive an expression for the number of allowed states per unit volume of a solid. (8)
 - (ii) Prove that the average energy of a free electron in metal is $3 E_{FO}/5$. (8)
- 12. (a) (i) Assuming the Fermi-Dirac distribution, derive an expression for the concentration of electrons per unit volume in the conduction band of an intrinsic semiconductor. (12)
 - (ii) Find the intrinsic carrier concentration and Position of Fermi energy level I in Silicon with respect to the VB edge. Given $m_h = 0.92 m_0$; $m_e^* = 0.49 m_0$. $N_C = 2.21 \times 10^{25} / m^3 \text{ and } N_V = 8.60 \times 10^{24} / m^3 \text{ and } T = 300 \text{ K.}$ (4)

OR

- (b) (i) With neat sketches, explain how Fermi level varies with impurity concentration and temperature in both p-type and n-type semiconductors. (8)
 - (ii) What is Hall effect? Describe an experimental arrangement to measure the Hall co-efficient. (8)
- 13. (a) Explain domain theory of ferromagnetism.

OR

(b) Mention the difference between soft and hard superconductors. Describe principle and working of SQUID and Cryotron.

2

14.	(a)	Explain about:		
		(i)	Electronic Polarisation, Ionic Polarisation.	(8)
		(ii)	Dielectric breakdown	(8)
	OR			
	(b).	Derive an expression for the internal field in a dielectric and hence obtain the		
		Clau	sius-Mosatti equation.	(16)
15.	(a)	(i)	What are metallic glasses? Explain how they are prepared	
			quenching method.	(2 + 6)
		(ii)	List out the applications of metallic glasses.	(4)
		(iii)	Explain what are the uses of shape memory alloys.	(4)
	OR			
	(b)	(i)	What is fullerene?	(2)
		(ii)	What are the applications of Carbon nAnotubes?	(4)
		(iii)	Explain with necessary diagrams, the synthesis of nanomaterial	s using the
			following methods:	
			(1) Chemical Vapour deposition	(5)
			(2) Sol-gel method.	(5)

•