

Question Paper Code: 51771

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

MA 2161/MA 22/080030004 - MATHEMATICS - II

(Common to all Branches)

(Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Solve $(D^2 + 6D + 9)y = 0$
- 2. Find the particular integral of $(D^2 + 4D + 8)y = e^{2x}$
- 3. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then show that grad $r = \frac{\vec{r}}{r}$
- 4. Find the divergence of the vector field $\vec{A} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 y^2z)\hat{k}$ at the point (2, -1, 1).
- 5. Define analytic function and give a suitable example.
- 6. Define harmonic function and give a suitable example.

- 7. Evaluate $\oint_C (x^2 y^2 + 2ixy) dz$, where C is the contour |z| = 1
- 8. Expand the function $f(z) = \frac{e^z}{(z-1)^2}$ about z = 1 in a Laurent's series.
- 9. If c₁ and c₂ are constant and f and g are functions of t then show that

$$L\{c_1f(t) + c_2g(t)\} = c_1L\{f(t)\} + c_2L\{g(t)\}$$

10. If $L\{F(t)\} = \frac{1}{p(p+\beta)}$ where '\beta' is a constant, then find $\lim_{t \to \infty} F(t)$.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) Solve
$$(D^2 + 7D + 12)y = 14e^{-3x}$$
 (8)

(ii) Solve
$$(x^2D^2 + 4xD + 2)y = x \log x$$
 (8)

OR

(b) (i) Solve
$$(D^2 + 5D + 6)y = 4 \cos 5x$$
 (8)

(ii) Solve
$$\frac{dx}{dt} + 2x - 3y = t$$
, $\frac{dy}{dt} - 3x + 2y = e^{2t}$ (8)

- 12. (a) (i) Show that the vector field $\vec{A} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$ is irrotational and find the scalar potential. (8)
 - (ii) Using Green's theorem show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \int (x dy y dx)$. Hence find the area of an ellipse. (8)

OR

(b) Verify Gauss Divergence theorem for
$$\vec{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$$
 taken over the region bounded by the cylinder $x^2 + y^2 = 4$, $z = 0$ and $z = 3$. (16)

51771

- 13. (a) (i) Show that (i) an analytic function with constant real part is a constant and (ii) an analytic function with constant modulus is also a constant. (8)
 - (ii) If f(z) is a regular function of z then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$. (8)

OR

- (b) (i) Show that $v(x, y) = \log(x^2 + y^2)$ is a harmonic function. Find a function u(x, y) such that f(z) = u(x, y) + iv(x, y) is an analytic function. (8)
 - (ii) Find the image of the circle |z-1|=1 in the complex plane under the mapping $w=\frac{1}{z}$. (8)
- 14. (a) (i) Evaluate $\oint_C \left(\frac{z^2+1}{z^2-1}\right) dz$ where C is a circle (8)
 - $(1) \quad |z| = 3/2$
 - (2) |z| = 1/2.
 - (ii) Expand
 - (1) $f(z) = \frac{\sin z}{z \pi}$ about $z = \pi$ and

(2)
$$f(z) = \frac{z}{(z+1)(z+2)}$$
 about $z = -2$.

OR

(b) (i) Using contour integration prove that
$$\int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)^2} = \frac{\pi}{2}$$
 (8)

(ii) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$$
, using contour integration. (8)

- 15. (a) (i) Find Laplace transform of $F(t) = (1 + t e^{-2t})^3$. (8)
 - (ii) Find the Inverse Laplace transform of $f(p) = \frac{p^2 + 2p 3}{p(p 3)(p + 2)}$ (8)

OR

- (b) (i) Find Laplace transform of F(t) = $\frac{1-\cos t}{t^2}$ (8)
 - (ii) State convolution theorem and hence evaluate $L^{-1}\left\{\frac{p}{(p^2+1)(p^2+4)}\right\}$ (8)