	 	. 1	1	1			
Reg. No.							

Question Paper Code: 51645

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

GE 2151 / 10133 EE 206/EE 1153/EE 26/080280011 – BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to all Branches)

(Regulations 2008/2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$

- 1. Two resistances of 4 Ω and 6 Ω are connected in parallel across 10 V battery. Determine the current through 6 Ω resistance.
- 2. Define RMS value.
- 3. Define voltage regulation of a transformer.
- 4. Why is starter necessary for a dc motor?
- 5. Compare PN junction diode and Zener diode.
- 6. What is effect of saturation of a transistor?
- 7. Define Flip-Flop.
- 8. What are the different sources of errors in DAC?

09-06

9.			to amplitude modulation, what is overmodulation, undermodulation and dulation?					
10.	Why are digital signals said to be noise immune?							
			$PART - B (5 \times 16 = 80 Marks)$					
11.	(a)	(i)	Explain the working of Single-Phase Energy Meter with necessary diagram.	(8)				
		(ii)	Calculate the					
			(1) Form Factor and					
			(2) Peak Factor of a full wave rectified sine wave.	(8)				
			OR					
	(b)	(i)	Explain the operation of attraction type of M.I instrument.	(8)				
		(ii)	Explain the working of Dynamometer type wattmeter with necessary diagram.	(8)				
12.	(a)	4.	lain the construction and working principle of DC generator with neat gram.	(16)				
			OR					
	 (b) Explain the working principle of various types of Single Phase (1φ) Induction Motor with neat diagram. 							
13.	(a)	(i)	With neat diagrams, explain how a voltage regulator circuit regulates the output voltage under the following conditions:					
			(1) Load resistance increases	(4)				
			(2) Input voltage decrease	(4)				
		(ii)	(1) Using the two diode analogy, explain why the base-emitter junction	1				

OR

(2) Sketch a common emitter amplifier circuit with an NPN transistor.

has to be forward biased to provide collector current.

	(b)	(i)	(1)	Explain the avalanche effect that accounts for the reverse breakdown voltage (PIV) of a diode.	n (4)				
			(2)	What is the effect on capacitance of a PN junction diode as forward and reverse bias are applied?	d (4)				
		(ii)	(1)	Explain the amplifying action of a transistor.	(6)				
			(2)	In a CE, I_B changes from 100 μA to 150 μA which causes a change in	n				
				I_C from 5 mA to 7.5 mA. If V_{CE} is held constant at 10 V, find β_a	ic				
				(h _{fe}).	(2)				
14.	(a)	Write short notes on:							
		(i)	RS	flip-flop .					
	•	(ii)	D f	lip-flop	-				
		(iii)	JK	flip-flop					
		(iv)	T f	lip-flop					
				OR					
	(b)	Wit	h nec	cessary diagrams, explain the functioning of any one type of ADC an	d				
		DA	C.		(16)				
15.	(a)	Wh	y mo	dulation is necessary? Write in detail about frequency modulation.					
•				OR					
	(b)	Discuss the usage of satellite for long distance communication with a neat block diagram of basic satellite transponder.							

.