1	 	 	/	 	 	,	 	
Reg. No.								

Question Paper Code: 51408

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

Common to all branches (Except Marine Engineering)

CY 2161 /CY 24/080010002 - ENGINEERING CHEMISTRY - II

(Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

$PART - A (10 \times 2 = 20 Marks)$

- 1. Construct a cell with Fe and Mg at standard conditions and calculate the emf developed. Given: E° (Fe²⁺/Fe) = -0.44 V and E° (Mg²⁺/Mg) = -2.37 V.
- 2. Zinc reacts with dilute H_2SO_4 to give hydrogen but Ag does not. Explain.
- 3. State Pilling Bedworth rule.
- 4. Name any two anodic inhibitors.
- 5. What is knocking?
- 6. What are the desirable characteristics of metallurgical coke?
- 7. Brief on degrees of freedom with example.
- 8. Mention about peritectic point in phase diagram of Mg₂SiO₄ SiO₂.
- 9. State any two metal ions which can be estimated using Flame photometer.
- 10. Definé absorbance.

$PART - B (5 \times 16 = 80 Marks)$

11.	(a)	(i)	What is an ion selective electrode? Explain its principle and working.	(6)
		(ii)	Derive an expression for Nernst equation. The emf of a cell measured by	•
			means of a hydrogen electrode against a saturated calomel electrode at	•
		•	298 K is 0.4188 V. If the pressure of the H ₂ (g) was maintained at 1 atm,	
			calculate the pH of the unknown solution, given the potential of reference	}
	•		calomel electrode is 0.2415 V.	(10)
			` OR	
	(b)	(i)	Draw the conductometric titration curve of strong acid versus strong base	•
			and explain it.	(4)
		(ii)	Explain with suitable examples any two applications of emf series.	(4)
		(iii)	Explain the potentiometric titration of FeSO ₄ Vs. K ₂ Cr ₂ O ₇ with a neat	•
			diagram.	(8)
12.	(a)	(i)	What is an electrochemical cell? Explain the mechanism of	f
			electrochemical corrosion with suitable example.	(8)
		(ii)	Explain differential aeration corrosion with suitable examples.	(8)
			OR	
	(b)	(i)	Write the difference between electroplating and electroless plating.	(8)
		(ii)	State the constituents of oil paints with examples and their functions.	(8)
13.	(a)	Exp	lain the types of petrol cracking.	(16)
		-	OR	
	(b)	(i)	Write briefly about the techniques to prevent knocking.	(8)
	•	(ii)	Explain the methods of production of synthetic petrol.	(8)
14.	(a)	(i)	Explain the phase diagram of water in detail with a neat diagram.	(10)
		(ii)	Define phase, component and degrees of freedom with suitable example.	(6)
			OR	

-	(b)	(i)	Explain the phase diagram of lead silver system.	(8)
		(ii)	What is condensed phase rule? What is its significance?	(8)
15.	(a)	(i)	Draw the block diagram of a flame photometer and explain the principle of	f
			its operation.	(8)
		(ii)	Derive Beer Lambert's Law. What are its limitations?	(5)
		(iii)	A solution of thickness 2 cms transmits 40% incident light. Calculate the	;
			concentration of the solution. Given that $\varepsilon = 5000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$.	(3)
			. OR	
	(b)	(i)	Explain the principle, construction and working of UV Visible	.
			spectrometer with a neat diagram.	(10)
		(ii)	Explain how Fe ²⁺ can be estimated using calorimetric technique.	(6)