Question Paper Code: 31036

B.E. / B.Tech. DEGREE EXAMINATION, OCTOBER 2014.

Third Semester

Electrical and Electronics Engineering

01UEE306 - DIGITAL LOGIC CIRCUITS

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. Draw the CMOS Inverter circuit.
- 2. Convert $(0.95)_{10}$ to its binary equivalent.
- 3. Simplify $y = \Sigma m(1,3,5,7)$.
- 4. Draw the logic diagram of half subtractor.
- 5. Differentiate level triggering and edge triggering?
- 6. How many flip flops are required to implement the Mod-6 counter and write the truth table for same?
- 7. What is meant by stuck-at-0 and stuck-at-1 fault?
- 8. What are the advantages of providing input buffer and output buffer in digital logic circuits?
- 9. Give any two features of VHDL.
- 10. What do you mean by system Library and user Library?

PART - B ($5 \times 16 = 80 \text{ Marks}$)

11.	(a)	(i)	Determine the single error correcting code for the information code 10111 for		
			odd parity.	(8)	
		(ii)	Write notes on Reflective code, Sequential code, Excess 3 code and Hol code with example.	llerith (8)	
			Or		
	(b)	(i)	Explain the circuit operation of 3 input TTL NAND logic with neat sketch.	(8)	
		(ii)	Discuss the characteristics of MOS families.	(8)	
12.	(a)	(i)	Design 1:8 demultiplexer using 1:4 demultiplexers.	(6)	
		(ii)	Implement the following Boolean function with suitable multiplexer. (A,B,C,D)= Σm (0,2,6,10,11,12,13) + d(3,8,14).	(10)	

Or

(b) (i) Simplify $y = \pi(0, 1, 4, 5, 6, 8, 9, 12, 13, 14)$ using K - map method.	(10)
(ii) Write notes on incompletely specified function with suitable examples.	(6)

- 13. (a) (i) Realize the JK flip flop using D flip flop.(10)
 - (ii) Discuss the 2 bit synchronous counter with timing diagram. (6)

Or

- (b) Explain the working of different types of 4 bit shift register. (16)
- 14. (a) Design a pulse mode circuit having two input lines X₁ and X₂ and one output line Z. The circuit should produce an output pulse to coincide with the last input pulse in the sequence X₁X₂ X₂. No other input sequence should produce an output pulse. (16)

Or

(b) (i) Realize the given function using 3X4X2 PLA.

$$f_1 = \Sigma m (0, 1, 3, 4)$$

$$f_2 = \Sigma m (1, 2, 3, 4, 5)$$
(8)

(ii) Compare PROM, PLA and PAL. (8)

- 15. (a) Write notes on
 - (i) Basic components of RTL design
 - (ii) Arithmetic Micro operations
 - (iii) Logic Micro operations
 - (iv) Conditional control statements.

Or

(b) Explain the working of synchronous MOD 6 counter and write VHDL code for synchronous MOD 6 counter. (16)

(16)