

Reg. No.:	-						
106.110.					·		

Question Paper Code: 45889

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth/Seventh Semester

Software Engineering

XCS 351/10677 SW 501 — OPERATIONS RESEARCH

(Common to 5 Year M.Sc. Information Technology and M.Sc. Computer Technology)

(Regulation 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. State the uses of operations research.
- 2. Define: Objective function.
- 3. What do you mean by feasible solution?
- 4. List the difference between Transportation problem and assignment problem.
- 5. State down the rules for constructing a project network.
- 6. Define: Crashing.
- 7. What do you mean by Holding Cost?
- 8. List the types of Deterministic inventory models.
- 9. State the uses of Kendal's notation.
- 10. Define: Transition Probability.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Use two phase method to

$$\operatorname{Max} Z = 5x \square + 3x_2$$

Subject to
$$\begin{aligned} 2x_1 + x_2 &\leq 1 \\ x_1 + 4x_2 &\geq 6 \end{aligned}$$

and $x1, x2 \ge 0$.

Or

(b) Use Dual simplex method to solve the LPP.

$$Max Z = -3x \Box - 2x_2$$

$$x_1 + x_2 \ge 1$$
 Subject to
$$\frac{x_1 + x_2 \le 7}{x_1 + 2x_2 \ge 10}$$

$$x_2 \le 3$$

and $x1, x2 \ge 0$.

12. (a) Obtain an optimum basic feasible solution to the following transportation problem:

		To		Available
From	7	3	2	2
	2	1	3.	3
	3	4	6	5
Demand	4	1	5	10

Or

(b) The assignment cost of assigning anyone operator to anyone machine is given in the following table.

	•	Operators			
		I	II	III	IV
	\mathbf{A}	10	5	13	15
Machine	В	3	9.	18	3
	\mathbf{C}	10	7	3	2
	\mathbf{D}	5	11	9	7

Find the optimal assignment by Hungarian method.

13. (a) Compute the earliest start, earliest finish, latest start and latest finish of each activity of the project given below.

Or

(b) A project consists of the following activities and time estimates:

Activity Least time (days) Greatest time (days) Most likely time (days)

			_
1-2	3	15 ·	6
2-3	2	14	5
1-4	6	30	12
2-5	2	8	5
2-6	5	17	11
3-6	3	15	6
4-7	3	27	9
5-7	1	7	4
6-7	2	8	5

- (i) Draw the network
- (ii) What is the probability that the project will be completed in 27 days?
- 14. (a) Find the Optimal quantity for a product where the annual demand for the product is 500 units. The cost of storage per unit per year is 10% of the unit cost and the ordering cost per order is Rs.l80.00. The unit costs are given below:

Quantity	Unit cost
$0 \le Q1 < 500$	Rs. 25
$500 \leq Q2 < 1500$	Rs. 24.80
1500 < Q3 < 3000	Rs. 24.60
3000 < Q4	Rs. 24.40

Or

- (b) For the following inventory problem, find out
 - (i) EOQ
 - (ii) When should the order be placed?
 - (iii) What should be inventory level(ideally) immediately before material order is received?
- 15. (a) People arrive at a Theatre ticket booth in Poisson distributed arrival rate of 25 per hour. Service time is constant at 2 minutes. Calculate
 - (i) The mean number in the waiting line
 - (ii) The mean waiting time
 - (iii) The utilisation factor.

Or

(b) A car park contains 5 cars. The arrival of cars is Poisson at a mean rate of 10 per hour. The length of time each car spends in the car park is negative exponential distribution with mean of 2 hours. How many cars are in the car park on average?