Reg. No.:

Question Paper Code: 45251

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Second Semester

Software Engineering

 ${\rm EMA~002-ANALYTICAL~GEOMETRY~AND~REAL~AND~COMPLEX~ANALYSIS}$

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r \, dr \, d\theta$.
- 2. Change the order of integration in $\int_{0}^{a} \int_{x}^{a} f(x, y) dy dx$.
- 3. Show that $\vec{f} = (x + 2y)\vec{i} + (y + 3z)\vec{j} + (x 2z)\vec{k}$ is solenoidal.
- 4. State Stoke's theorem.
- 5. Find the equation of the line passing through (1, -2, -1) and perpendicular to the plane 2x 3y + 5z + 4 = 0.
- 6. Find the centre and radius of the sphere $2(x^2 + y^2 + z^2) + 6x 6y + 8z + 9 = 0$.
- 7. Verify whether the function $e^x \sin y$ is harmonic (or) not.
- 8. Prove that the function $f(z) = \overline{z}$ is not analytic.
- 9. Expand $f(z) = \cos z$ about $z = -\pi/2$ in Taylor's series.
- 10. Find the singularities of $f(z) = \frac{z^2 + 4}{z^3 + 2z^2 + 2z}$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Evaluate $\iint_R \frac{e^{-y}}{y} dx dy$, by choosing the order of integration suitably, given that R is the region bounded by the lines x = 0, x = y and $y = \infty$.
 - (ii) Evaluate $\iiint_V dx \, dy \, dz$, where V is the finite region of space formed by the planes x=0, y=0, z=0 and 2x+3y+4z=12. (8)

Or

- (b) (i) Change the order of integration in $\int_{0}^{a} \int_{\frac{x^2}{a}}^{2a-x} xy \ dy \ dx$ and then evaluate it. (8)
 - (ii) Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dz dy dx.$ (8)
- 12. (a) (i) Find the values of the constants a, b, c so that $\vec{f} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3xz^2 y)\vec{k}$ may be irrotational. For these values of a, b, c, find also the scalar potential of \vec{f} . (8)
 - (ii) Find the directional derivative of $\phi = 2xy + z^2$ at the point (1, -1, 3) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$. (8)

Or

- (b) Verify Green's theorem in a plane with respect to $\int_{c}^{c} (x^2 dx xy dy)$, where C is the boundary of the square formed by x = 0, y = 0, x = a, y = a.
- 13. (a) Find the equation of the image of the line $\frac{x-1}{3} = \frac{y-3}{5} = \frac{z-4}{2}$ in the plane 2x y + z + 3 = 0.

Or

(b) Find the equation of the tangent planes to the sphere $x^2 + y^2 + z^2 - 4x - 2y - 6z + 5 = 0$ which are parallel to the plane x + 4y + 8z = 0. Find also their points of contact.

- 14. (a) (i) If w = u(x, y) + i v(x, y) is an analytic function, the curves of the family u(x, y) = a and the curves of the family v(x, y) = b cut orthogonally where a and b are varying constants. (8)
 - (ii) Find the analytic function w = u + iv if $v = e^{2x} (x \cos 2y y \sin 2y)$. Hence, find u. (8)

Or

- (b) If f(z) = u + iv is a regular function of z prove that $\nabla^2 \{ \log |f(z)| \} = 0$.
- 15. (a) (i) Evaluate $\int_{c} \frac{z \, dz}{(z-1)(z-2)^2}$, where C is the circle $|z-2| = \frac{1}{2}$, using Cauchy's integral formula. (8)
 - (ii) Find the Laurent's series of $f(z) = \frac{z^2 1}{z^2 + 5z + 6}$ valid in the region

(1)
$$|z| < 2$$
 and (2) $2 < |z| < 3$. (8)

 \mathbf{Or}

- (b) (i) Use Cauchy's residue theorem to evaluate $\int_{c} \frac{dz}{\sin hz}$, where C is the circle |z|=4.
 - (ii) Evaluate $\int_{0}^{2\pi} \frac{\sin^2 \theta}{5 3\cos \theta} d\theta$, using contour integration. (8)