

Reg. No.	

Question Paper Code: 45274

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fourth Semester

Software Engineering

ESE 042 — OPERATING SYSTEM AND SYSTEM SOFTWARE

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the tasks performed by the analysis and synthesis phases of an assembler?
- 2. What is the syntax of a macro call? Give an example.
- 3. Differentiate between hard real-time and soft real-time systems.
- 4. Draw the process state transition diagram.
- 5. What are the multi threading models?
- 6. What are the requirements of solutions to critical section problem?
- 7. What are the necessary conditions for a deadlock situation to arise?
- 8. How does the roll-out roll-in variant of swapping work?
- 9. What is thrashing?
- 10. How is the sequential file access method different from the direct access method?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Explain in detail about the elements of assembly language programming. (8)
 - (ii) Give the algorithms for pass I and pass II of the assembler. (8)

Or

- (b) What is a macro processor? How is a macro processor designed?
- 12. (a) (i) Explain in detail mainframe and multiprocessor systems. (8)
 - (ii) How does the IPC facility provide a mechanism to allow processes to communicate and synchronize their actions? (8)

Or

- (b) (i) Explain process creation and termination with suitable examples.(8)
 - (ii) Compare and contrast distributed and clustered systems. (8)
- 13. (a) (i) Which characteristics can be used for comparing the CPU scheduling algorithms. (4)
 - (ii) Consider the following set of processes with the length of the CPUburst time given in milliseconds: (12)

Process	Burst time	Priority		
P1	10	3		
P2	1	1		
P 3	2	3		
P4	1	4		
P5	5	2		

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0. Smaller priority number implies a higher priority.

- (1) Draw the Gantt charts and calculate the average waiting time using FCFS scheduling and SJF scheduling.
- (2) Draw the Gantt charts and calculate the average waiting time using non-preemptive priority scheduling and preemptive priority scheduling.
- (3) Draw the Gantt chart and calculate the average waiting time using RR (quantum=1) scheduling.

Or

- (b) (i) What is a monitor? Explain monitor solution to dining philosopher problem. (8)
 - (ii) Discuss the issues in multi threading. (8)

14.	(a)	(i)	Consider the following	ng snapshot	and answer	the questions	using
			Banker's algorithm:	•		•	(8)
			4 11	3.4	-	A 11 1 1	

	Allocation				Max				Available			
	A	В	\mathbf{C}	D	A	В	\mathbf{C}	D	A	В	\mathbf{C}^{-1}	D
P 0	0	0	1	2	0	0 .	1	2	. 1	5	. 2	0
P1	1	. 0	0	0	1	7	5	0 -				
P2	1	3	5	4	2	3	5	6	,			
P 3	0	6	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

- (1) What is the content of the matrix "Need"?
- (2) Is the system in a safe state?
- (3) If a request from process P1 arrives for (0,4,2,0) can the request be granted immediately?
- (ii) Explain segmentation process in detail.

(8)

Or

- (b) Explain in detail the concept of paging.
- 15. (a) (i) Explain how demand paging works. (8)
 - (ii) Discuss the various schemes for defining the logical structure of the directory system. (8)

Or

(b) Explain page replacement algorithms with suitable examples.