

				··· ·· · · · · ·			
Reg. No.:							
					i .	l 1	

Question Paper Code: 45871

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

First Semester

Software Engineering

XCS 115/10677 SW 105 — PROBLEM SOLVING TECHNIQUES

(Common to 5 Year M.Sc. Computer Technology and M.Sc. Information Technology)

(Regulation 2003/ 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Add (83)₁₀ and (34)₁₀ in BCD.
- 2. Simplify AB + ABC + AB'.
- 3. Realize using NAND gates only Y = A + A'B + AB.
- 4. Differentiate a decoder and a encoder.
- 5. What is a Latch?
- 6. Give the HDL code for SR flip-flop.
- 7. Compare synchronous and Asynchronous counter.
- 8. Draw the timing diagram for a 2 bit ripple up counter.
- 9. What is a Hazard?
- 10. Define Asynchronous sequential circuit.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Reduce the following expression and implement using basic gates and then implement it using only NAND gates.

$$Y = ((AB)' + (A + B)')AB'.$$
 (4)

(ii) Draw the logic diagram of EXNOR using only NOR gates. Prove it using De-Morgan's theorem. (12)

Or

(b) (i) Simplify
$$AB + (AC)' + A (BC)' (AB + C)$$
. (6)

- (ii) Find the complement of x(y'z) + yz. (6)
- (iii) Convert decimal 46 to gray to code. (4)
- 12. (a) (i) Reduce using k-map

$$F = \pi \ (0, 6, 7, 8, 12, 13, 14, 15).$$
 (6)

(ii) Explain Binary Multiplier with a neat diagram. (10).

Or

- (b) Design a carry look ahead adder.
- 13. (a) Design a sequence detector to detect the following sequence 1010. Draw state diagram, state table and k-map. Remove redundant states. Use JK flip-flops.

Or

- (b) Design a sequential circuit with 4 Flip-Flops ABCD. The next states of B,C, D are equal to present states of A,B,C respectively. The next state of D is EXOR of the present states of C and D.
- 14. (a) Draw a 5 flip-flop shift counter is transition table and waveforms. Explain its operation as a decade counter.

Or

- (b) (i) Design a mod5 ripple counter using a 3 bit ripple counter. (8)
 - (ii) Draw and explain the function of 3 bit bidirectional shift register using JK flip-flops. (8)

15. (a) An asynchronous sequential circuit is described by the excitation and output function. $Y = x_1 x_2' + (x_1 + x_2') y$ and Z = y.

where Y and Z are excitation and output functions respectively.

- (i) Draw the logic diagram of the circuit.
- (ii) Derive Transition table and output map.
- (iii) Obtain the flow table.
- (iv) Describe the behavior of the circuit.

Or

- (b) Give the hazard free realization for the following Boolean function $f(a,b,c,d) = \sum m (1,3,4,5,6,7,9,11,15)$
 - (ii) Analyze the circuit by deriving.
 - (1) Flow table
 - (2) Transition flow diagram and
 - (3) Transition flow table if exists.

