

•	7	1	· · · · · · · · · · · · · · · · · · ·			7	
Reg. No.:							

Question Paper Code: 11687

M.E. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Elective

Power Systems Engineering

PE 9275/CO 951/PS 9002/10233 PSE 12 — SOFTWARE COMPUTING TECHNIQUES

(Common to M.E. Control and Instrumentation Engineering/M.E. Electrical Drives and Embedded Control/M.E. Power Electronics and Drives/M.E. Embedded System Technologies/M.E. Power Management)

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What is Quantifiers?
- 2. State some advantages of artificial intelligence system.
- 3. What is sigmoid function? Write the logistic sigmoid function.
- 4. Mention any four types of learning rules.
- 5. Mention the various properties of fuzzy sets.
- 6. What are the basic elements of a fuzzy logic control system?
- 7. What is cross over? What are the types of cross over?
- 8. What is mutation operator? What is called mutation rate?
- 9. What is meant by Identification?
- 10. Mention the various Simulink tools available for Fuzzy logic control.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) With a neat block diagram briefly explain various components of an Expert System and the role of each one of these.

Or

- (b) With a neat block diagram briefly explain the various components of a Intelligent control system.
- 12. (a) Explain the architecture and algorithm of MADALINE network with an example.

Or

- (b) Explain the architecture and algorithm of Kohonen self organising network with an example.
- 13. (a) Discuss and compare the methods of defuzzification used in fuzzy logic with examples.

Or

- (b) With a neat sketch explain Fuzzy logic control for a nonlinear time-delay system.
- 14. (a) Briefly explain Genetic algorithm in terms of Reproduction, Selection, Evaluation and Replacement.

Or

- (b) Briefly explain any two search techniques for optimization.
- 15. (a) Explain the design of a nonlinear control system using neural network.

 Also explain the implementation steps in MATLAB.

Or

(b) Briefly explain the application of genetic algorithm to power system optimization problem.