

| ,        | <br> | <br> | _ | <br> |   |  |
|----------|------|------|---|------|---|--|
| Reg. No. |      |      | - |      | - |  |

## Question Paper Code: 11231

M.E./M.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

## Elective

Computer Science Engineering

CS 9264/UCP 9164/CS 964/10244 CSE 51 — DATA WAREHOUSING AND DATA MINING

(Common to M.E. Software Engineering and M.Tech. Information Technology/M.E. Networking and Internet Engineering/M.Tech. Multimedia Technologies/M.Tech. Main Frames Technology)

(Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. What is the need for data warehouse?
- 2. What is the use of back end process in data warehouse design?
- 3. What do you mean by 'noisy data'? Give an example.
- 4. What are support and confidence in association rule mining?
- 5. Differentiate prediction from classification.
- 6. Define Bayes theorem.
- 7. What is dissimilarity matrix?
- 8. Mention any four applications of cluster analysis.
- 9. What is a range query? Give an example.
- 10. Define web mining.

| 11.         | (a) | Explain Data Warehousing architecture with a neat sketch and examples. (16)                        |
|-------------|-----|----------------------------------------------------------------------------------------------------|
|             |     | $\mathbf{Or}$                                                                                      |
|             | (b) | Explain OLAP operations and types of services in detail with necessary diagrams and examples. (16) |
| 12.         | (a) | Explain the various functionalities of data mining with respect to an example. (16)                |
|             |     | $\mathbf{Or}$                                                                                      |
|             | (b) | Explain apriori algorithm for mining frequent item sets with an example. (16)                      |
| 13.         | (a) | (i) Describe the issues regarding preprocessing the data for classification and prediction. (8)    |
|             | •   | (ii) Explain the classification by decision tree induction. (8)                                    |
|             |     | $\mathbf{Or}$                                                                                      |
|             | (b) | Compare the advantages and disadvantages of eager classification versus lazy classification. (16)  |
| 14.         | (a) | (i) Discuss the different types of clustering methods. (8)                                         |
| •           |     | (ii) Describe the working of PAM (Partioning Around Medoids) algorithm. (8)                        |
|             |     | $\mathbf{Or}$                                                                                      |
|             | (b) | Describe the working of DBSCAN algorithm and explain the concept of clusters used in DBSCAN. (16)  |
| <b>15</b> . | (a) | Explain the following:                                                                             |
|             |     | (i) Spatial data mining.                                                                           |
| •           |     | (ii) Web mining. (8+8)                                                                             |
|             |     | $\mathbf{Or}$                                                                                      |
|             | (b) | Explain the following:                                                                             |
|             |     | (i) Multimedia data mining.                                                                        |
|             |     | (ii) Text mining. (8+8)                                                                            |