	 	,	 -		,	 <u> </u>	 	
Reg. No.:				<u> </u> 				

Question Paper Code: 91565

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester

Information Technology

IT 2302/IT 52 — INFORMATION THEORY AND CODING

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. List the properties of Mutual Information.
- 2. What is coding efficiency?
- 3. What is the need for adaptive Huffman coding?
- 4. State the LZW algorithm.
- 5. What are B & P frames?
- 6. What is the need for quantizer?
- 7. How many bit errors can be detected using a Hamming code of distance 3?
- 8. Why cyclic codes are extremely well-suited for error detection?
- 9. What is the principle of Turbo coding?
- 10. Compare Convolutional and block codes.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) A discrete memory less source has an alphabet of five symbols whose probabilities of occurrence are as described here: (8)

Symbols:

X1 X2 X3 X4 X5

Probability: 0.2 0.2 0.1 0.1 0.4

Compute the Huffman code for this source and the efficiency of the source encoder.

(ii) Show that the BSC capacity, C = 1-H (P).

(8)

	(b)	(i)	Write the Shannon-Fano encoding algorithm.	(4)
		(ii)	Apply the above procedure to the following message ensemble	•
		;	$X = \{x1, x2, x3, x4, x5, x6, x7, x8, x9\}$	•
	-		$P = \{0.49, \ 0.14, \ 0.14, \ 0.07, \ 0.07, \ 0.04, \ 0.02, \ 0.02, \ 0.01\}$	
			Find the entropy and efficiency of the source.	(12)
12.	(a)	the	th the following symbols and their probability of occurrence, emessage "went#" using arithmetic coding algorithms. Cothmetic coding with Huffman coding principles. Symbols: e N t w #	encode mpare
			Probability: 0.3 0.3 0.2 0.1 0.1	
,		•	\mathbf{Or}	
	(b)	Exp	olain	
		(i)	MPEG Audio coders	(8)
	•	(ii)	Dolby Audio coders.	(8)
13.	(a)	Dra	w JPEG encoder block diagram and explain each block.	
			\mathbf{Or}	
	(b)	Exp	lain in detail about the MPEG-1 standard.	
				•
14.	(a)	Exp	lain about the Linear Block codes used in error detection ection.	and
			\mathbf{Or}	
	(b)	(i)	Design an encoder for the $(7, 4)$ binary cyclic code generate $g(x) = 1 + x + x^3$ and verify its operation using the message vertical (0101) .	ed by vector (10)
	•	(ii)	Explain Syndrome calculation in detail.	(6)
15.	(a)	(i)	Construct a convolution encoder for the following specifical rate efficiency $\frac{1}{2}$, constraint length 3, the connections from the register to modulo-2 adder are described by the following equal $g1(x) = 1 + x + x^2$, $g2(x) = 1 + x^2$.	shift
		(ii)	Determine the output codeword for the message [10011].	(5)
	•	(iii)	Draw the code tree, state diagram.	(5)
			Or	
	(b)	Expl	lain Turbo decoding in detail.	