}						
Reg. No.:			:			

Maximum: 100 marks

Question Paper Code: 91440

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fourth Semester

Electrical and Electronics Engineering

EE 2253/EE 44/EE 1253 A/080280033/10133 IC 401 — CONTROL SYSTEMS

(Common to Instrumentation and Control Engineering and Electronics and Instrumentation Engineering)

(Regulation 2008/2010)

(Also common to PTEE 2253 – Control Systems for B.E. (Part-Time) Third Semester – Electronics and Instrumentation Engineering – Regulation 2009 and 10133 IC 401 – Control System for B.E. (Part-Time) Third Semester – EEE – Regulation 2010)

Time: Three hours

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. What are the basic elements in control systems?
- 2. Define: transfer function.
- 3. What is the type and order of the system?

$$G(S) = \frac{K}{S(TS+1)}$$

- 4. Write the PID controller equation.
- Write the expression for resonance frequency and peak in terms of time response specifications.
- 6. Define: Gain margin.
- 7. What are the location of roots in S plane for stability?
- 8. What is meant by +20db/dec slope change?
- 9. What is the need for compensators?
- 10. What are the desired performance criteria specified in compensator design?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) With neat diagrams, explain the working of AC and DC servo motors. (16)

Or

(b) Using block diagram reduction rules, convert the block diagram of Fig. 1 to a simple loop.

Fig. 1

12. (a) Derive the expression for unit step response of under damped second order system. (16)

Or

- (b) Obtain the expression for dynamic error coefficients of the following system $G(S) = \frac{10}{S(1+S)}$. (16)
- 13. (a) Draw the Bode plot of the following system $GH(S) = \frac{10}{S(0.1 S + 1)(0.01 S + 1)} \quad \text{and hence obtain gain crossover}$ frequency. (16)

Or

(b) Using polar plot, determine gain crossover frequency, phase crossover frequency, gain margin and phase margin of feedback system with open – loop transfer function (16)

$$G(S)H(S) = \frac{10}{S(1+0.2S)(1+0.002S)}.$$

14. (a) Consider the closed – loop system shown in Fig. 2, determine the range of K for which the system is stable. (16)

Fig. 2

Or

(b) Draw the root locus of the following system

 $G(S).H(S) = \frac{K}{S(S+1)(S+2)}.$

15. (a) A unity feedback system has an open loop transfer function

$$G(S) = \frac{5}{S(S+1)(0.5S+1)}$$

Design a suitable compensator to maintain phase margin of at least 40°.

Or

(b) Consider the unity feedback system whose open – loop transfer function is $G(S) = \frac{k}{S(0.1S+1)(0.2S+1)}$

The system is to be compensated to meet the following specifications:

- (i) Velocity error constant $k_v = 30$
- (ii) Phase margin $\phi m \ge 50^{\circ}$
- (iii) Bandwidth $w_1 = 12 \ rad/\sec$.

(16)