

		,	,		 	 		 	
•				l			•		
Reg. No.:	·				•				

Question Paper Code: 91397

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Third Semester

Electronics and Communication Engineering

EC 2203/EC 34/080290010/10144 EC 304 — DIGITAL ELECTRONICS

(Regulation 2008/2010)

(Common to PTEC 2203 – Digital Electronics for B.E. (Part – Time)
Third Semester – Electronics and Communication Engineering Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Simplify: $A\overline{B}C + \overline{A}\overline{B}C$.
- 2. Write the truth table for EXOR gate.
- 3. State the function of select inputs of a MUX.
- 4. Draw the logic circuit of a half subtractor.
- 5. Mention the advantage of JK FF over SR FF.
- 6. Draw the basic block diagram of sequential circuits.
- 7. How many address lines are required for a 4K ROM?
- 8. List the types of PLDs.
- 9. Compare Mealy and Moore machines.
- 10. Differentiate between static and dynamic hazards.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Simplify the Boolean function $F = \pi(1,3,5,6,7,10,14,15)$ and realize using NAND gates only. (10)
	•	(ii)	Briefly about the CMOS characteristics. (6) Or
	(b)	(i)	Using tabulation method minimize the following function $F = \sum (0,1,2,8,9,15,17,21,24,25,27,31) . \tag{10}$
		(ii)	Simplify the expression $Y = AB + A\overline{B}.\overline{(\overline{A}\overline{C})}$. (6)
12.	(a)	(i)	Implement the full subtractor using demultiplexer. (6)
	•	(ii)	Draw the circuit of a BCD adder and explain its operation. (10) Or
	(b)	Desi	gn a BCD to seven segment decoder. (16)
13.	(a)	(i)	Explain the different methods of triggering FFs. (6)
•	•	(ii)	Design a synchronous MOD 12 down counter using JK FFs. (10) Or
•	(b)	(i)	Explain how to convert serial data to parallel and parallel data to serial using shift registers. (10)
	•	(ii)	Realize D and T FFs using JK FF. (6)
14.	(a)	(i)	Derive the PLA programming table for the combinational circuit that squares a 3 bit number. Minimize the number of product terms. (10)
`		(ii)	Differentiate between
		•	(1) Static and dynamic memory.
			(2) Primary and secondary memory. (6) Or
	(b)	(i)	Describe the memory read and memory write operation with timing waveforms. (8)
		(ii)	What is FPGA? Explain

- 15. (a) (i) What is the significance of state assignment? Explain the different techniques used for state assignment. (8)
 - (ii) Design a sequence detector to detect the sequence 101 from 10101.

Or

- (b) (i) Give an account for various hazards that could occur in a asynchronous circuit. With examples explain how they could get eliminated. (8)
 - (ii) Write the HDL code for a 4 bit comparator and universal shift register. (8)