	 					 		 •	
Reg. No.:				:			·		
			 		•				

Question Paper Code: 91467

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fourth Semester

Electronics and Instrumentation Engineering

EI 2253/EI 43/080300014/10133 EE 406 — DIGITAL LOGIC CIRCUITS

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. State Consensus theorem.
- 2. Simplify the function $F(A, B, C) = \Sigma(0, 1, 3, 5, 7)$.
- 3. Implement the following function using suitable multiplexer.

$$F(A, B) = \sum m(0, 1, 2)$$
.

- 4. Implement a Half subtractor using a suitable decoder and an OR gate.
- 5. What is a race around condition? How it is avoided?
- 6. Convert T flip flop into a D flip flop.
- 7. Compare Synchronous and Asynchronous sequential circuits.
- 8. State the rules for state assignment.
- 9. State the difference between PLA and PAL.
- 10. What is a totem pole output?

PART B — $(5 \times 16 = 80 \text{ marks})$

State and prove De Morgan's theorem. 11. (a) Convert the following: (ii) $(10101011)_2 = ()_{16}$ $(37564)_8 = ()_{10}$ $(FACE)_{16} = ()_2.$ (b) Simplify the following function using Karnaugh map (i) (8) Quine McCluskey method (ii) (8) $F(A, B, C, D) = \sum m(0, 2, 3, 5, 6, 7, 12, 13, 14)$. 12. (a) Design a full adder and implement it using only NAND gates. (i) (8)(ii)Design a Binary to Gray code converter. (8)Or Design a Magnitude comparator to compare two 3-bit binary (b) (i) numbers. (8)Implement the following function using suitable multiplexer. (ii) $F(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 6, 7, 9, 10, 11).$ (8)13. Explain the working of a JK flip flop with it characteristic equation, (a) characteristic table and logic diagram. Design a synchronous counter to count the following sequence. (ii)0, 1, 3, 5, 7, 9, 12, 0, 1, 3, Or Design a 3-bit universal shift register. (b) (8) Obtain a minimal state table using partition technique for the following state table. Present State Next State, Z X = 0 X = 1 $q_2, 0 q_8, 1$

Present State	Next State, Z		
	X = 0 X = 1		
\boldsymbol{q}_3	$q_{\scriptscriptstyle 4}$, 1 , $q_{\scriptscriptstyle 5}$, 0		•
q_{4}	$q_{\scriptscriptstyle 3}$, 1 $q_{\scriptscriptstyle 6}$, 0		
$q_{\scriptscriptstyle 5}$	$q_{\scriptscriptstyle 4}$, 0 $q_{\scriptscriptstyle 5}$, 1		•
$oldsymbol{q}_{6}$	q_3 , 0 q_5 , 1		
q_7	q_3 , 0 q_4 , 1		
q_8	$q_{\scriptscriptstyle 3}$, 1 $q_{\scriptscriptstyle 1}$, 0		

14. (a) With suitable example, explain the steps involved in the design of pulse-mode circuits.

Or

- (b) Design a fundamental mode circuit with two-input (x_1, x_2) and one output (z) to meet the following specifications. Whenever $x_1 = 0$, z = 0. The first change in input x_2 that occurs while $x_1 = 1$ must cause the output to become z = 1. AZ = 1 output must not change to z = 0 until $x_1 = 0$.
- 15. (a) Implement the following function using:
 - (i) PAL
 - (ii) PLA.

$$f,(A,B,C,D) = \sum m (0, 5, 7, 9, 11, 13, 14).$$
 (8 + 8)

Or

- (b) (i) Explain the EPROM technology. (6)
 - (ii) With schematic diagram, explain the two input TTL NAND gate operation. (10)