B.E./B.Tech. DEGREE EXAMINATION, NOVE_MBER/DECEMBER 2014.
S1xth Semester
Computer Science and Engineering

CS 2352/CS 62/10144 CS 602 — PRINCIPLES OF COMPILER DESIGN

(Regulation 2008/2010)

(Common to PTCS 2352—Principles of Compiler Design for B.E. (Part—Time) Fifth

Semester—Computer Science and Engineering—Regulation 2009)

Time : Three hours | Maximum : 100 marks

D

© ® N ;s w

10.

11.

Answer ALL questions.

PART A — (10 x 2 = 20 marks)

What is the role of lexical analyzer?

Write regular expression to describe a languages consist of strings made of
even numbers a and b. '

List out the various storage allocation strategies.
Write a CF grammar to represent palindrome.
What are the types of intermediate languages?

Give syntax directed translation for case statement.

+- Differe'ntiate between basic block and tlow graph.

Draw DAG to represent afi]=b[i]; a[i]=& ¢;
Represent the following in flow graph

i =1; sum = 0; while(i <= 10){.sum+ =11+ +;}

What is global data flow analysis?

PART B — (5 x 16 = 80 marks)

(a) (i) Explain the need for grouping of phases of compiler. | . (8)
(1) Explain a language for specifying the lexical analyzer. (8)

Or
(b) (1) Write short notes on compilér construction tools. - (8)

(1) Explain — specification and recognition of tokens. (8)

12.

13.

14.

15.

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(1 Explain the specification of simple type checker. | (8)

(1) Explain -— runtime environment with suitable example. (8)
_ ‘ Or

Find the LALR for the given grammar and parse the sentence (a+b)*c

E—>E+T/T,T >T*FIF,F—(E)lid. - (16)

(Generate intermediate code for the following code segment along with the
required syntax directed translation scheme

While (i<10)

"f@%2==0)

-~ Evensum = evensum + 1;

Klse

Oddsum =oddsum + 1;

Or
Generate intermediate code for the following code segment along with the
required syntax directed translation scheme. o (16)

s=s-+alil [}

i) Explain register allocation and assignment with suitable example.

' (8)
(1) Explain — code generation phase with simple code generation
algorithm. _ - (8)

Or
(1) Generate DAG representation of the following ¢ode and list out the

applications of DAG representation. 8)
i = 1; while (i<=10) do | '

sum+ = afi];

‘(ii) Explain — Generating code from DAG with suitable example. (8)

(i) Explain — principle sources of optimization. | (8)

(1) -IHustrate optimization of basic blocks with an example. (8)
Or

Explain peephole optimization and various code improving

Transformations. - - ' (16)

2 ' 91355

