

	 т		 				 	
Reg. No.:		-				•		

Question Paper Code: 91345

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fourth Semester

Computer Science and Engineering

CS 2253/CS 43/CS 1252 A/080250011/10144 CS 404 — COMPUTER ORGANIZATION AND ARCHITECTURE

(Common to Information Technology)

(Regulation 2008/2010)

(Also common to PTCS 2253/10144 CS 404 – Computer Organisation and Architecture for B.E. (Part-Time) Third Semester – CSE – Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What do you understand from word length?
- 2. What is super scalar operation?
- 3. Define nano programming.
- 4. What do you mean by emulation?
- 5. What is the use of exception handling?
- 6. How do you handle data hazard?
- 7. Differentiate the memory types based on size, speed and cost.
- 8. Define hit rate and miss penalty.
- 9. List the components in simple input I/O interface.
- 10. What are the modes of operation available in DMA?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	Draw the block diagram and explain the steps involved in operational concepts.	the basic (16)						
		\mathbf{Or}	' •						
	(b)	(i) Why do we use addressing mode? Explain the basic a modes.	ddressing (10)						
		(ii) Write short notes on assembler directives.	(6)						
12 .	(a)	With a neat flow chart explain the micro program sequencing.	(16)						
•		Or	· _						
	(b)	Draw necessary diagrams and explain the control signal general hardwired control.	tion using (16)						
13.	(a)	Discuss the following issues in unconditional branches with examples							
		(i) Instruction Queue	(8)						
,	. •	(ii) Pipelining.	(8)						
		Or							
	(b)	Explain the following with examples:							
		(i) Delayed branches	(6)						
	_	(ii) Dynamic branch predictions.	(10)						
14 .	(a)	Explain the following DRAMS with block diagrams:							
	-	(i) Synchronous DRAM	(8)						
•		(ii) Asynchronous DRAM.	(8)						
		\mathbf{Or}							
•	(b)	Explain the virtual memory address translation with necessa and diagrams.	ry tables (16)						
15 .	(a)	Explain the working of Universal Serial Bus (USB).	(16)						
		\cdot Or							
	(b)	How do you handle multiple and simultaneous interrupts?	(16)						