Reg. No. :

Question Paper Code: 43023

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Third Semester

Computer Science and Engineering

14UCS303 - COMPUTER ORGANIZATION AND ARCHITECTURE

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Smith chart may be permitted)

PART A - (10 x 1 = 10 Marks)

1. The time between the start and completion of a task is referred to as

(a) Response time (b) Execution time (c) Throughput (d) Both a and b

2. The BSA instruction is

(a) Branch and Store Accumulator	(b) Branch and Save return Address
(c) Branch and Shift Address	(d) Branch and Show Accumulator

3. How many full adders are required for *k* bit addition?

(a) k (b) k+1 (c) 2k (d) k-1

4. The processor keeps track of the results of its operations using a flags called

- (a) Conditional code flags (b) Test output flags
- (c) Type flags (d) None of these

5. The condition observed in the following sequence of instructions is

Add r1,r2 Add r1,r3				
(a) Data hazard		(b) Data depe	ndence	
(c) Structural haza	rd	(d) Normal se	quence	
6. The throughput of an ide	eal pipeline with k stage	s is instru	s instruction/clock cycle.	
(a) <i>k</i>	(b) <i>k</i> -1	(c) 1	(d) 2	
7. The cost of parallel proc	essing is primarily dete	rmined by		
(a) Time complexi	ty	(b) Switching	complexity	
(c) Circuit comple	xity	(d) None of th	ne above	
8. When instruction i and i is called	nstruction j are tends to	write same register of	r memory location, it	
(a) Input depender	nce	(b) Output dependence	9	
(c) Ideal pipeline	((d) Digital call		
9. The signal sent to the d is	evice from the processo	or to the device after i	receiving an Interrupt	
(a) Interrupt-acknowledge		(b) Return sig	(b) Return signal	
(c) Service signal		(d) Permission	n signal	
10. The extra time needed	to bring the data into m	emory in case of a mis	ss is called as	
(a) Delay	(b) Propagation time	(c) Miss penalty	(d) Data latency	
	PART - B (5 x 2 =	10 Marks)		

11. Why the data bus is bidirectional while the address bus is unidirectional?

12. What is the purpose of guard bits in floating point operations?

13. How do you handle the data hazard?

14. Define interleaved or fine grained multithreading.

15. What is polling?

PART - C (5 x 16 = 80 Marks)

16. (a) What do you mean by addressing modes? Explain the types of addressing modes that exists in modern processors? (16)

Or

(b) (i)	Describe the different classes of Instruction format with examples.	(12)
(ii)	Registers <i>R</i> 1 and <i>R</i> 2 of a computer contain the decimal values 1200 and 2400 respectively. What is the effective address of the memory operand in each of the following instructions?	1
	Load 20(<i>R</i> 1), <i>R</i> 5	
	Add –(<i>R</i> 2), <i>R</i> 5	(4)
17.(a) (i)	Illustrate non-restoring division algorithm with an example.	(8)
(ii)	Design a 16-bit carry- look ahead adder using 4-bit adders and explain.	(8)
	Or	
(b) Der nur	ive and explain an algorithm for adding and subtracting two floating point nbers.	binary (16)
18. (a) Ex	plain the super scalar operations with a neat diagram.	(16)
	Or	
(b) Sta	ate and explain the different types of hazards that can occur in a pipeline.	(16)
19. (a) Ex	plain Flynn's classification of computers.	(16)
	Or	
(b) Di	scuss in detail instruction level parallelism.	(16)
20. (a) Exp	plain the virtual memory address translation and TLB with necessary diagra	am. 16)
	Or	
(b) Wh	at is virtual memory? Explain the address translation scheme.	(16)

43023

#