Question Paper Code: 54001

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2017

Fourth Semester

Computer Science and Engineering

15UMA421 - DISCRETE MATHEMATICS

(Common to Information Technology)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 \times 1 = 10 \text{ Marks})$$

1. Symbolise the following statement " x^2 is non-negative", assuming the real numbers as the universe of discourse

(a) $(\exists x) (x^2 \ge 0)$	(b) $(\exists x)(x^2 < 0)$
(c) $(\forall x) (x^2 \ge 0)$	(d) $(\forall x) (x^2 < 0)$

2. The contra positive of the conditional statement $P \rightarrow Q$ is given by

(a) $\exists Q \rightarrow \exists P$	(b) $\exists P \rightarrow \exists Q$
(c) $\neg (Q \rightarrow P)$	(d) $\exists (P \rightarrow Q)$

3. The number of possible solutions of the equation x + y + z = 15 for $x, y, z \ge 0$ is

- (a) C(15, 3) (b) C(16, 3) (c) C(17, 2) (d) C(18, 2)
- 4. How many three letter words can be formed from the set {a,b,c,d}
 - (a) 12 (b) 64 (c) 24 (d) 81
- 5. A graph in which every vertex has the same degree is called

(a) Simple graph (b) Regular graph (c) complete graph (d) Euler graph

6. For what values of '*n*' the graph κ_n is Hamiltonian

(a) $n \ge 2$ (b) $n \ge 3$ (c) n > 4 (d) n > 5

- 7. The minimum order of non-abelian group is

 (a) 4
 (b) 8
 (c) 5
 (d) 6

 8. Every cyclic group is

 (a) non-abelian
 (b) abelian
 (c) symmetric
 (d) both (a) and(b)

 9. In distributive complemented lattice a ≤ b if and only if

 (a) a = b
 (b) a '⊕ b = 0
 (c) a * b ' = 1
 (d) b ' ≤ a '

 10. The dual of a ∧ ā = 0 is
 - (a) $a \wedge \overline{a} = 1$ (b) $a \vee \overline{a} = 0$ (c) $\overline{a} \wedge a = 0$ (d) $a \vee \overline{a} = 1$ PART - B (5 x 2 = 10 Marks)
- 11. Symbolize the statement "All men are giants".
- 12. When is a recurrence relation said to be homogeneous?
- 13. State the hand shaking theorem.
- 14. Prove that the identity element is unique in a group.
- 15. Define poset . Give an example.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) Obtain the principal conjunctive and principal disjunctive normal form of $(\sim P \rightarrow r) \land (q \leftrightarrow p)$. (16)
 - Or
 - (b) By in direct method, prove that $(x)[P(x) \rightarrow Q(x)], (\exists x)xP(x) \Rightarrow (\exists x)Q(x).$ (16)
- 17. (a) Prove that by mathematical induction $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$. (16)
 - Or
 - (b) If we select 10 points in the interior of an equilateral triangle of side 1, show that there must be atleast two points whose distance apart is less than 1/3. (16)
- 18. (a) Construct circuit matrix, incidence matrix and path matrix $p(v_2, v_4)$. (16)

Or

54001

(b)	Prove that G is a tree if and only if there is only one path between ever vertices.	y pair of (16)
19. (a)	(i) Prove that (Z_5, X_5) is an abelian group.	(8)
	(ii) Prove that a finite integral domain in a field.	(8)
Or		
(b)	(i) Prove that every subgroup of an abelian group is normal.	(8)
	(ii) Find the left cosets of $\{[0], [2]\}$ in the group $(Z_4, +_4)$.	(8)
20. (a)	(i) State and prove the distributive inequalities in a lattice.	(8)
	(ii) Define Boolean algebra and give an example.	(8)
	Or	

(b) If (L, \land, \lor) be a complemented, distributive lattice, then for any $a, b \in L$ prove that (i) $\overline{a \lor b} = \overline{a} \land \overline{b}$ (ii) $\overline{a \land b} = \overline{a} \lor \overline{b}$. (16)