Reg. No. :

Question Paper Code: 41301

B.E. / B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Third Semester

Civil Engineering

14UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 \text{ x } 1 = 10 \text{ Marks})$$

1. The formula for finding the Euler constant a_n of a Fourier series in [0, 2π] is _____

(a)
$$a_n = \int_0^{\pi} f(x) cosnx \, dx$$

(b) $a_n = \int_0^{2\pi} f(x) cosnx \, dx$
(c) $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) cosnx \, dx$
(d) $a_n = \frac{1}{\pi} \int_0^{\pi} f(x) cos \frac{n\pi x}{l} \, dx$

- 2. If f(x) is an odd function defined in (-l, l) the value of a_n is _____
 - (a) 0 (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{2n}{\pi}$ (d) 1

3. The Fourier cosine transform of e^{-3x} is _____

(a) $\frac{2}{\pi} \left(\frac{3}{s^2+3^2}\right)$ (b) $\left(\frac{3}{s^2+3^2}\right)$ (c) $\sqrt{\frac{2}{\pi}} \left(\frac{3}{s^2+3^2}\right)$ (d) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2+3^2}\right)$

4. If Fourier Transform of f(x) = F(s) then the Fourier Transform of f(ax) is _____

(a) $\frac{1}{s} F\left(\frac{s}{a}\right)$ (b) $F\left(\frac{s}{a}\right)$ (c) $\frac{1}{2} F\left(\frac{s}{a}\right)$ (d) $\frac{1}{|a|} F\left(\frac{s}{a}\right)$

- 5. The $Z\{a^n\}$ is _____ (a) $\frac{Z}{Z-a}$, |Z| > a (b) $\frac{Z}{Z-n}$, |Z| > n (c) a Z - a (d) $(Z-a)^n$ 6. $Z\{cosn\theta\}$ is _____ (a) $\frac{(Z-\cos\theta)}{Z^2-2Z\cos\theta+1}$ (b) $\frac{Z(Z-\cos\theta)}{Z^2-2Z\cos\theta+1}$ (c) $\frac{Z}{Z^2-2Z\cos\theta+1}$ (d) $\frac{1}{Z^2-2Z\cos\theta+1}$ In the one dimensional wave equation $u_{tt} = a^2 u_{xx}$, where a^2 stands for _____ 7. (c) $(T/m)^2$ (d) $\frac{T}{m}$ (a) 1/m(b) *T* The two dimensional Laplace equation is _____ 8. (a) $u_{xx} + u_{yy} = 0$ (b) $u_x + u_y = 0$ (c) $u_{xx} = 0$ (d) $u_{xx} = 4u_{yy}$ 9. In the explicit formula for solving one dimensional heat equation, λ is _____ $(c) \frac{k}{ah^2}$ (a) $\frac{a}{h^2}$ (b) *ah* (d) ka 10. Liebmann's iteration process is used to solve the _____ (a) One dimensional heat flow equation (b) Two dimensional heat flow under steady state equation
 - (c) One dimensional wave equation
 - (d) Hyperbolic equation

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. Find the Fourier constants b_n for $x \sin x$ in $(-\pi, \pi)$.
- 12. Find the Fourier sine transform of $\frac{1}{x}$.
- 13. Find the *Z* transform of $x(n) = \begin{cases} \frac{a^n}{n!} & \text{for } n \ge 0\\ 0 & \text{otherwise} \end{cases}$
- 14. Classify $4u_{xx} + 4u_{xy} + u_{yy} 6u_x 8u_y 16u = 0$.
- 15. State Standard Five Point Formula (SFPF) and Diagonal Five Point Formula (DFPF).

PART - C (5 x 16 = 80 Marks)

16. (a) (i) Express $f(x) = (\pi - x)^2$ as a Fourier series of periodicity 2π in $0 < x < 2\pi$. (8) (ii) Find the Fourier series for $f(x) = x^2 in - \pi$, $x < \pi$. (8)

Or

- (b) (i) Find the Fourier series of periodicity 3 for $f(x) = 2x x^2$, 0 < x < 3. (8)
 - (ii) Compute the first two harmonics of the Fourier series of f(x) given by the following table: (8)

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

17. (a) Find the Fourier Transform of $f(x) = f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$

Her

ence show that	(1) $\int_0^\infty \frac{\sin s - s \cos s}{s^3} \cos \frac{s}{2} ds = \frac{3\pi}{16}$	
	(2) $\int_0^\infty \frac{(x\cos x - \sin x)^2}{x^6} dx = \frac{\pi}{15}$	(16)

(b) (i) Show that Fourier Transform of $f(x) = e^{-\frac{x^2}{2}}$ is $e^{-\frac{x^2}{2}}$. (8)

(ii) Evaluate
$$\int_0^\infty \frac{dx}{(4+x^2)(25+x^2)}$$
 using Fourier transform method. (8)

- 18. (a) (i) (1) State and prove the linear property on Z-Transform. (4)
 - (2) State the initial and final value theorems on Z-Transform. (4)

(ii) Find
$$Z^{-1}\left(\frac{8z^2}{(2z-1)(4z-1)}\right)$$
 by convolution method. (8)

Or

(b) (i) Solve by Z-transforms
$$y(n+2) + 6y(n+1) + 9y(n) = 2^n$$
 given $y(0) = y(1) = 0$. (8)

(ii) Using convolution theorem, find the inverse Z-Transform of $\frac{z^2}{(z-1)(z-3)}$. (8) 19. (a) A tightly stretched string with fixed end points x = 0 and x = 10 is initially in a position Given by $y(x, 0) = k(10x - x^2)$. It is released from rest from this position. Find the expression for the displacement at any time 't'. (16)

Or

- (b) A rectangular plate with insulated surface is 10*cm* wide and so long compared to its width that it may be considered infinite length without introducing appreciable error. If the temperature at short edge y = 0 is given by $u = \begin{cases} 20x, & 0 \le x \le 5\\ 20(10-x), & 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at $0^{0}C$. Find the steady-state temperature at any point of the plate. (16)
- 20. (a) Solve $u_{xx} + u_{yy} = 0$ over the square mesh of side 4 units; satisfying the following boundary conditions:

(i)	u(0, y) = 0	for $0 \le y \le 4$	
(ii)	u(4, y) = 12 + y	for $0 \le y \le 4$	
(iii)	u(x, 0) = 3x	for $0 \le x \le 4$	
(iv)	$u(x, 4) = x^2$	for $0 \le x \le 4$	(16)

Or

- (b) (i) Solve by Bender Schmidt method $u_{xx} = 2u_t$ given u(0, t) = 0, u(4, t) = 0, u(x,0) = x(4-x) assuming h=k=1. Find the values of u up to t=5. (8)
 - (ii) Solve by Crank-Nicholson method the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t for single step when h = 1/4, k = 1/16. (8)