Question Paper Code: 41202

B.E. / B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Second Semester

Civil Engineering

14UMA202 - ENGINEERING MATHEMATICS - II

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Answer ALL Questions

estions

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1. The *P.I.* of $(D^2 + 4)y = \cos 2x$ is

(a) $\frac{-x \sin 2x}{4}$ (b) $\frac{x \sin 2x}{4}$ (c) $\frac{-x \cos 2x}{4}$ (d) $\frac{x \cos 2x}{4}$

- 2. The complimentary function of $(D^2 2D)y = 3e^x \sin x$ is
 - (a) $(A+Bx)e^{2x}$ (b) $(Ax+B)e^{-2x}$ (c) $A+Be^{2x}$ (d) $Ae^{x}+Be^{2x}$
- 3. The unit vector normal to the surface $x^2 + y^2 z = 10$ at (1, 1, 1) is

(a)
$$\frac{2\vec{i}+2\vec{j}-\vec{k}}{3}$$
 (b) $\frac{2\vec{i}-2\vec{j}-\vec{k}}{3}$ (c) $\frac{-2\vec{i}+2\vec{j}+\vec{k}}{3}$ (d) $\frac{2\vec{i}+2\vec{j}+\vec{k}}{3}$

- 4. By stokes theorem, $\int_{c} \vec{r} \, d\vec{r} =$ _____.
 - (a) π (b) 1 (c) 0 (d) None of these
- 5. The fixed points of $\omega = \frac{3z-4}{z-1}$ is
 - (a) 2, -2 (b) 2, 0 (c) 0, 2 (d) 2, 2

6. The bilinear transformation that maps the points ∞ , i, 0 onto 0, i, ∞ is

(a)
$$-\frac{1}{z}$$
 (b) $-\frac{i}{z}$ (c) $\frac{i}{z}$ (d) None of these
7. The value of $\int_{c} \frac{z}{z+2} dz$ if C is $|z|=1$
(a) $4\pi i$ (b) $-4\pi i$ (c) $2\pi i$ (d) 0
8. The nature of the singular point of $f(z) = \frac{1}{\sin\frac{1}{z-a}}$ is
(a) Isolated singularity (b) Essential singularity
(c) Removable singularity (d) None of the above
9. $L\left[\frac{1}{\sqrt{t}}\right] =$
(a) $\sqrt{\frac{\pi}{s}}$ (b) $\frac{\sqrt{\pi}}{s}$ (c) $-\sqrt{\frac{\pi}{s}}$ (d) $\frac{\pi}{\sqrt{s}}$
10. $L\left[\frac{\cos at}{t}\right] =$
(a) $\frac{1}{s}$ (b) 0 (c) $\frac{-1}{s^2}$ (d) None of these
PART - B (5 x 2 = 10 Marks)

- 11. Solve $(x^2D^2 + xD + 1)y = 0$.
- 12. Prove that div $(\operatorname{curl} \vec{F}) = 0$.
- 13. Define bilinear transformation.
- 14. State Cauchy's integral formula.
- 15. Find the laplace transform of $\sin 3t \sin 5t$.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Solve $(D^2 + 1)y = \sin x \sin 2x$.
 - (ii) Solve $(x^2D^2 7xD + 12)y = x^2$. (8)

(8)

(b) (i) Solve $(D^2 + a^2)y = \tan ax$ by method of variation of parameters. (8)

Or

- (ii) The number of bacteria in a culture grows at a rate proportional to the number present. If the number doubles in one hour, find how much it will be in 4 hours? Also find the time at which the number will be 4 times the original number. (8)
- 17. (a) (i) Prove $\vec{F} = (y^2 \cos x + z^3)\vec{i} + (2y \sin x 4)\vec{j} + 3xz^2\vec{k}$ is irrotational and find its scalar potential. (8)

(ii) Verify Green's theorem in the plane for $\int (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where c is the boundary of the region defined by $x = y^2$, $y = x^2$. (8)

Or

- (b) Verify the Gauss Divergence theorem for $\vec{F} = 4xz\vec{i} y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (16)
- 18. (a) (i) If w = u(x, y) + iv(x, y) is an analytic function the curves of the family u(x, y) = aand the curves of the family v(x, y) = b are cut orthogonally, where a and b are the constants. (8)

(ii) Find the image of
$$|z-2i| = 2$$
 under the transformation $w = \frac{1}{z}$. (8)

Or

- (b) (i) Find the regular function whose imaginary part is $e^{-x}(x \cos y + y \sin y)$. (8)
 - (ii) Find the bilinear transformation that maps the points -1, 0, 1 in the z-plane onto the point 0, i, 3i in the *w*-plane. (8)
- 19. (a) (i) Using Cauchy's integral formula, evaluate $\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, c is the circle |z| = 3(6)
 - (ii) Using contour integration, prove that $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta = \frac{\pi}{12}.$ (10)

3

(b) (i) Find the Laurent's expansion of
$$f(z) = \frac{7z-2}{z(z-2)(z+1)}$$
 valid in the region $1 < |z+1| < 3$
(8)

41202

- (ii) Using contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x dx}{(x+1)(x^2+1)}.$ (8)
- 20. (a) Given $y' = x^2 + y$, y(0) = 1, find y (0.1) by Taylor series method, y (0.2) by modified Euler's method, y (0.3) by R-K method. (16)

Or

- (b) (i) Find the Laplace transform of the function $f(t) = \begin{cases} \sin t, 0 < t < \pi \\ 0, \pi < t < 2\pi \end{cases}$ (8)
 - (ii) Using Laplace transform, solve $y''+6y'+9y=2e^{-3t}$, y(0)=1, y'(0)=-2. (8)